

State of the Structures and Bridges Fiscal Year 2018

July 1, 2017 - June 30, 2018

Prepared By: Structure and Bridge Division, Virginia Department of Transportation

Comments and or questions may be directed to:

Kendal R. Walus, P.E., State Structure and Bridge Engineer

Virginia Department of Transportation — 1401 East Broad Street, Richmond, VA 23219

Telephone: 804-786-4575 Email: Kendal.Walus@VDOT.Virginia.Gov

TABLE OF CONTENTS

1	Ove	erview	1
	1.1	Introduction	1
	1.2	Performance	3
	1.3	Inventory Addressed in Report	5
2	Inve	entory	7
	2.1	Structures	7
	2.2	Inventory Changes from Previous Years	8
	2.3	Categories of Structures	11
	2.4	Ancillary Structures	16
3	Cor	ndition	18
	3.1	Condition Categories (Good, Fair, and Poor (SD) Structures)	18
	3.2	Performance Goals	18
	3.3	Current Conditions - Structures	28
	3.4	Current Conditions - Ancillary Structures	37
	3.5	Condition Trends – General	38
4	Del	ivery of the Maintenance and Construction Programs	42
	4.1	Maintenance (Bridge Crews & Contracts)	42
	4.2	Inspection, Load Rating and Permitting	44
	4.3	Construction.	48
	4.4	Technology and Innovation (Techniques & Materials)	49
A	ppend	ix A – Additional Inventory Information	51
A	ppend	ix B – Additional Inventory Information on Ancillary Structures	57
A	ppend	ix C – Additional Inventory and Condition Information for Structures	61
A	ppend	ix D – General Condition Ratings (Bridges and Large Culverts)	65
A	ppend	ix E – State of Good Repair Bridges in Virginia's Approved SYIP	70

LIST OF FIGURES

Figure 1-1- Distribution of Structures by Highway System	2
Figure 1-2- Percentage of Non-Poor (SD) Structures Statewide by Count and Deck Area (Nine Year	
Figure 1-3- Distribution of Structures by Owner	
Figure 2-1- Cumulative Age Distribution of Structures	9
Figure 2-2- Average Age of Structures by District	10
Figure 2-3- Number of Structures Built by Decade	10
Figure 2-4- Count and Condition Data for Most Common Structure Categories (All Structures)	12
Figure 2-5- Count and Condition Data for Less Common Structure Categories (All Structures)	12
Figure 2-6- Count and Condition Data for Most Common Structure Categories (NBI Structures)	13
Figure 2-7- Count and Condition Data for Less Common Structures Categories (NBI Structures)	13
Figure 2-8- Count and Condition Data for Most Common Structure Categories (Non-NBI Structures	s)14
Figure 2-9- Count and Condition Data for Less Common Structure Categories (Non-NBI Structures	s)14
Figure 2-10- Distribution of Ancillary Structures by District	16
Figure 2-11- Distribution of Ancillary Structures by Type	17
Figure 3-1: Percentage and Count of Structures in Good, Fair, and Poor Condition (Nine Year Tren	nd) 20
Figure 3-2- Annual Transitions of Good/Fair/Poor or Poor (SD) from End of FY 2017 to End of FY 2	2018 22
Figure 3-3- Percentage of Deck Area of Poor (SD) NBI Structures on the NHS by Year	24
Figure 3-4- Percentage of Deck Area of Poor (SD) NBI Structures on the NHS by District	25
Figure 3-5- Percentage of Deck Area of NBI Structures on the NHS in Good Condition by Year	25
Figure 3-6- Percentage of Deck Area of NBI Structures on the NHS in Good Condition by District	26
Figure 3-7- Chief Engineer's Quarterly Report for July 2018	27
Figure 3-8- Percentage and Count of Poor (SD) Structures by District – All Systems	28
Figure 3-9- Percentage and Count of Poor (SD) NBI Structures on the NHS by District	29
Figure 3-10- Percentage and Count of Poor (SD) Structures on Interstate System by District	29
Figure 3-11- Percentage and Count of Poor (SD) Structures on Primary System by District	30
Figure 3-12- Percentage and Count of Poor (SD) Structures on Secondary System by District	30
Figure 3-13- Percentage of Poor (SD) Structures on Urban System by District	31
Figure 3-14- Deck Area of NBI Structures on NHS by District	32
Figure 3-15- Deck Area of Poor (SD) NBI Structures on NHS by District	33
Figure 3-16- Total Deck Area of All Structures by District	34

Figure 3-17- Deck Area of Poor (SD) Structures by District	34
Figure 3-18- Deck Area of Weight-Posted Structures by District	36
Figure 3-19- Statewide Ancillary Structure Condition by Asset Type	37
Figure 3-20- Percentage of Poor (SD) Structures - Recent Trends on All Systems	39
Figure 3-21- Percentage of Poor (SD) Structures - Recent Trends for Interstate System	39
Figure 3-22- Percentage of Poor (SD) Structures - Recent Trends for Primary System	40
Figure 3-23- Percentage of Poor (SD) Structures - Recent Trends for Secondary System	40
Figure 3-24- Percentage of Poor (SD) Structures - Recent Trends for Urban System	41
Figure 3-25- Comparing Virginia's NBI Poor (SD) Structures to the National Average	41
Figure A-1- Average Age of Interstate Structures by District	55
Figure A-2- Average Age of Primary Structures by District	55
Figure A-3 - Average Age of Secondary Structures by District	55
Figure A-4 - Average Age of Urban Structures by District	56
Figure C-1- Trends in Average General Condition Ratings by Component – Statewide	62
Figure C-2- Bridge Decks: Trends in Average General Condition Ratings by Highway System	63
Figure C-3- Superstructures: Trends in Average General Condition Ratings by Highway System	63
Figure C-4- Substructures: Trends in Average General Condition Ratings by Highway System	64
Figure C-5- Culverts: Trends in Average General Condition Ratings by Highway System	64

LIST OF TABLES

Table 1-1 - Percentage of Non-SD Structures	3
Table 1-2- Conditions of Ancillary Structures	4
Table 2-1- Number of Structures	7
Table 2-2- Area of Structures	8
Table 2-3- VDOT's Special Structures	15
Table 3-1- Condition Categories for Structures	18
Table 3-2- Virginia's non-SD Targets	19
Table 3-3- Virginia's Count of Fair (5) Structures	20
Table 3-4- Virginia's Status with FHWA's Required Performance Targets	23
Table 3-5- Percentage of Deck Area of Poor (SD) NBI Structures on the NHS by District and System	•
Table 3-6- Deck Area of NBI Structures on NHS by District and Highway System	32
Table 3-7- Deck Area of Poor (SD) NBI Structures on NHS by District and Highway System	33
Table 3-8- Deck Area of All Structures by District and Highway System	35
Table 3-9- Deck Area of Poor (SD) Structures by District and Highway System	35
Table 3-10– Percentage of Poor (SD) Condition Deck Area by District and Highway System	35
Table 3-11- Deck Area of Weight-Posted Structures by District and Highway System	36
Table 3-12- Ancillary Structures Minimum General Condition Rating by Structure Type	37
Table 3-13- Change in Number of Poor (SD) Structures during FY2018	38
Table 3-14– Type of Change in Number of Structures in Poor Condition (SD) during FY2018	38
Table 4-1- Activities Performed by VDOT's Bridge Crews	42
Table 4-2- VDOT's Bridge Maintenance Crews	42
Table 4-3- FY2018 Accomplishments of VDOT's Bridge Maintenance Crews, and Number of S Preserved, Rehabilitated, or Replaced	
Table 4-4- Inspection Frequencies	45
Table 4-5- Number of Inspections Performed on VDOT-Owned Structures in FY 2018	46
Table A-1- Total Number of Bridges by District	52
Table A-2- Total Number of Large Culverts by District	52
Table A-3- Total Number of NBI Bridges by District	52
Table A-4- Total Number of NBI Large Culverts by District	53
Table A-5- Total Number of Non-NBI Bridges by District	53

Table A-6- Total Number of Non-NBI Large Culverts by District	.53
Table A-7- Total Number of NBI Bridges on NHS by District	.54
Table A-8- Total Number of NBI Large Culverts on NHS by District	.54
Table B-1- Number of Sign Structures by District	.57
Table B-2- Number of Luminaire Structures by District	.58
Table B-3- Number of Traffic Signal Structures by District	.58
Table B-4- Number of High Mast Light and Camera Pole Structures by District	.59
Table C-1- Number of Structure Components in Each General Condition Rating by System	.61
Table E-1- SGR Bridges in Virginia's Approved SYIP: VDOT- Owned Bridges	.70
Table E-2- SGR Bridges in Virginia's Approved SYIP: Locality - Owned Bridges	.74

1 OVERVIEW

Mission of the Structure and Bridge Division

The Structure and Bridge Division will plan, design, inspect and rehabilitate bridges and structures for a surface transportation system that represents the highest standards of safety and quality. Stewardship, accountability, professionalism, and customer service will guide every action that we take and every decision that we make.

1.1 Introduction

This annual report summarizes the conditions of Virginia's bridges, large culverts and ancillary structures (traffic control devices). It also describes the bridge maintenance, construction, and inspection programs of the Virginia Department of Transportation (VDOT). The report reflects accomplishments for the 2018 Fiscal Year (referred to as FY2018), which ran from July 1, 2017 through June 30, 2018. Salient historical trends are also provided. All "current" data in this report reflect inventory and condition information as of July 1, 2018.

Unless specifically noted otherwise, data presented in this report provide the condition and inventory information for all highway structures meeting the criteria for the population of the structures referred to as "Virginia Responsible Structures". The term "Virginia Responsible Structures" refers to bridges and culverts carrying public traffic that are owned by the Virginia Department of Transportation (VDOT), localities (cities, towns and counties), other state agencies, or other legal entities of the Commonwealth of Virginia. Virginia Responsible Structures include temporarily closed structures, as well as bridges of any length and culverts with total opening in excess of 36 square feet.

There are currently 21,154 Virginia Responsible Structures, of which 19,578 are owned by VDOT. The remainder are owned by other legal entities, including localities, state agencies, and toll authorities. As shown in Figure 1-1, the majority of Virginia Responsible Structures are on secondary routes, the vast majority of which are owned by VDOT. VDOT's control of secondary routes is due in large part to the Byrd Act of 1932, which transferred ownership of most county-owned secondary roads and bridges to the state. This is a departure from the practice in most states, where most secondary roads are under local jurisdiction. As a result, VDOT has the third largest number of highway structures in its state-owned inventory, behind Texas and North Carolina.

Since 2007, bridges have been designed and built using new standards and construction materials, resulting in anticipated service lives of 75 years. However, the vast majority (94.8%) of Virginia's bridges were built prior to 2007 and were designed with anticipated design service lives of 50 years. About 49.2% percent of the Virginia Responsible Structures are 50 years or older (10,399 of 21,154), meaning these structures have reached or exceeded their anticipated service lives.

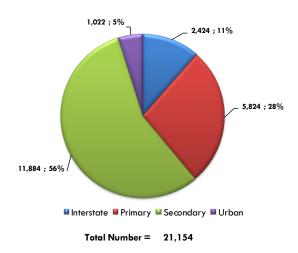


Figure 1-1- Distribution of Structures by Highway System

The aging of the bridge inventory is a national concern and the greatest challenge facing Virginia's highway structures. To provide some context for the problem, if Virginia were to replace all its 50-year service life bridges as they turned 70, the approximate cost over the next 50 years would be \$54 billion. However, if current funding remains constant over the same 50-year interval, approximately \$15 billion will be available to address these bridges (combined maintenance and construction funds). Structure deterioration occurs over a period of decades rather than months or years, so the results of short-term funding deficiencies will not necessarily be readily evident in near-term trends of conditions. However, over the long-term, if the funding for structure maintenance is not increased, we should expect to see significant degradation of the average structure conditions, particularly when evaluated through the metric of deck area as opposed to structure count.

Additional funding is clearly needed, as is evident from the annually calculated monetary needs for the bridge inventory. However, in recognition of real fiscal constraints, Virginia has developed a proactive approach for making the best use of the available funding. Virginia's program uses the techniques below to optimize bridge life, safety, and value of funds invested:

- A bridge safety inspection program that exceeds the requirements of the Federal Highway Administration (FHWA), typically resulting in inspection intervals no greater than 2 years for bridges and 4 years for large culverts, with more frequent intervals for fracture critical and Poor structures.
- A construction program (State of Good Repair) that emphasizes the most cost-effective and appropriate repairs in conjunction with preservation techniques
- A maintenance program that uses a balanced approach to preserving, repairing, and rehabilitating structures
- A proactive program of practical, collaborative research that allows for early implementation of new and innovative techniques and using durable materials
- A decentralized organizational structure allowing decisions to be made at the local/district level wherever possible
- Performance targets and quarterly reporting comparing results with the targets

1.2 Performance

In 2012, Virginia attained its long-standing goal when more than 92% of its structures were not Poor (SD). This led to the development of new targets, which are shown in Table 1-1, along with current performance levels (except for Lynchburg district, which has no interstate routes).

District	Inters	state	Prim	ary	Secondar	y & Urban	NBI*	Only	All Systems								
District	Current	Goal	Current	Goal	Current	Goal	Current	Goal	Current	Goal							
1 Bristol	96.3%		97.6%		94.1%		94.3%		95.2%								
2 Salem	98.6%		96.7%		96.4%		96.2%		96.6%								
3 Lynchburg	0.0%		98.2%		94.7%		95.7%		95.8%								
4 Richmond	98.1%		94.8%		92.8%		93.6%		94.5%								
5 H. Roads	99.6%	99%	95.3%	96%	94.2%	94%	95.3%	94.0%	95.9%	94.0%							
6 F'burg	97.5%		91.3%		94.7%		93.0%		93.9%								
7 Culpeper	100.0%		98.0%		95.0%		95.5%		96.2%								
8 Staunton	99.8%		97.1%		95.7%		95.6%									96.5%	
9 NOVA	99.2%		98.2%		98.0%		98.1%		98.3%								
Statewide	98.8%	99%	96.7%	96%	95.2%	94%	95.3%	95.5%	96.0%	95.5%							

Table 1-1 - Percentage of Non-Poor (SD) Structures

During FY2018, Virginia reduced the number of Poor (SD) structures from 935 (4.4% of structures) to 844 (4.0%). For nationwide comparison, 8.9% of the bridges in the National Bridge Inventory (NBI) were Poor (SD) as of December, 2017 (the last date for which data are available). Figure 1-2 provides long-term trends showing changes to the number, percentage, and deck area of Virginia's non-SD structures. Additional multiyear bridge condition trends are provided in the body of this report.

Poor (SD) structures are not necessarily unsafe, but they have usually deteriorated to a state where they require significant repair, rehabilitation or, in many cases, replacement. Poor (SD) structures have one or more major components that are rated as Poor in accordance with National Bridge Inspection Standards (NBIS).

Effective bridge management requires continued maintenance of structures in all conditions, not only Poor (SD) structures. As with most physical systems, preventive maintenance on bridges is more cost-effective than waiting to perform the extensive repairs required after advanced deterioration has occurred. Virginia's continued progress in reducing the number of Poor (SD) structures has led to the development of additional performance metrics that will lead to an improved balance of expenditures, emphasizing system preservation in addition to work on Poor structures. Specifically, VDOT has added goals for improving its structures in Fair condition and the conditions of bridge deck expansion joints. We are addressing the condition of joints since most of the problems on bridges occur when joints leak, thereby causing the elements below to deteriorate at a much faster rate.

^{*} NBI refers to structures on the National Bridge Inventory, which are more than 20 feet in length.

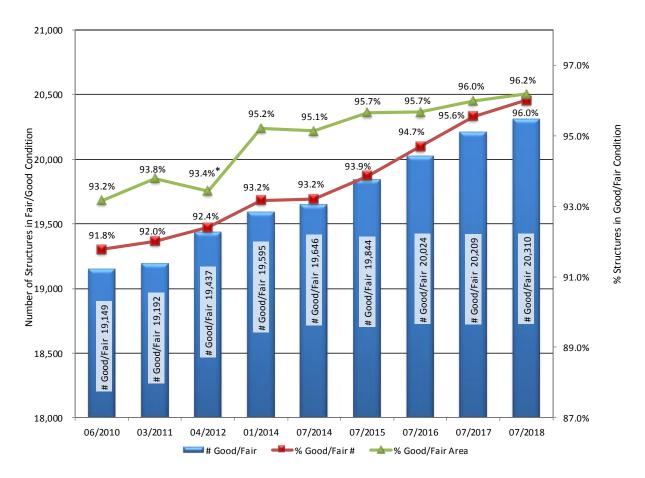


Figure 1-2- Percentage of Non-Poor (SD) Structures Statewide by Count and Deck Area (Nine Year Trend)

VDOT is also responsible for the inventory, maintenance and inspection of ancillary structures, which include five types: signs, luminaires, signals, high mast lights, and camera poles. Their conditions are summarized in Table 1-2 for the 34,730 ancillary structures in the inventory. All information for ancillary structures is based on condition and inventory data as of October, 2017. Ancillary structure data provided is only for structures that are owned by VDOT, as VDOT has very limited information on such structures that it does not own.

Table 1-2- Conditions of Ancillary Structures

	Percentage of Primary Component in Good or Fair Condition					
Structure Type	Foundation Parapet Superstructi					
Sign	76.4%	89.4%	90.6%			
Luminaires	69.5%	N/A	80.0%			
Signal	50.3%	N/A	64.1%			
High Mast and Camera Poles	90.3%	N/A	98.0%			

^{*} The decrease in the percentage of Good/Fair bridge area on 04/2012 was caused by the deterioration of several large bridges during the preceding year. The subsequent increase in the percentage of Good/Fair bridge area on 01/2014 was a result of repairs to bring them from Poor to Good/Fair condition in the previous year.

1.3 INVENTORY ADDRESSED IN REPORT

Data presented in this report provide the condition and inventory information for all highway structures meeting the criteria for the population of the structures referred as "Virginia Responsible Structures". The term, "Virginia Responsible Structures" was developed to provide a consistent and coherent group of structures for internal and external reporting.

Virginia Responsible Structures excludes the following structures: Permanently closed structures, structure types that are not relevant to the reports on the condition of highway bridges such as pedestrian bridges, scales, and ferry docks. Structures that are outside the control of the Commonwealth of Virginia, such as bridges and culverts owned by federal agencies or legal entities directly managed by a federal agency, are also excluded.

Figure 1-3 displays the distribution of Virginia Responsible Structures by owner.

- VDOT: (owned by VDOT)
- Localities: (owned by counties, cities, and towns)
- Other: Various legal entities, which includes state toll authorities (Chesapeake Bay Bridge and Tunnel District), other state agencies (e.g. Game and Inland Fisheries, State Parks), and state and local toll authorities (Richmond Metropolitan Authority, Dulles Greenway Toll, Globalvia (Pocahontas Parkway- Route 895)), and border bridges.

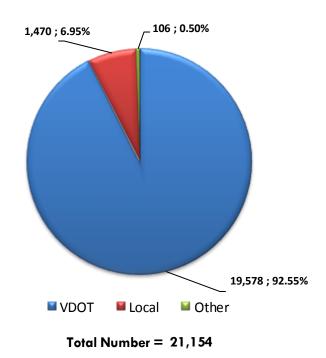


Figure 1-3- Distribution of Structures by Owner

Virginia Responsible Structures include structures that meet one of the following criteria:

- Structures in the NBI for which Virginia is responsible for reporting condition data to the Federal Highway Administration (FHWA). These structures are described as NBI structures and include bridges and culverts with a length greater than 20 feet.
- Non-NBI structures that are shorter bridges with a length less than or equal to 20 feet; and large culverts that have a length less than 20 feet and total openings with an area greater than 36 square feet.

The FHWA holds VDOT responsible for the inspection of all Virginia Responsible NBI structures, regardless of owner. However, VDOT is only responsible for the maintenance of VDOT owned NBI structures, and localities, other state agencies, or other legal entities of the Commonwealth of Virginia are responsible for the maintenance of all other NBI structures. VDOT chooses to also inspect and maintain the Non-NBI structures through its Structure and Bridge Division.

Specific technical definitions of many of the terms used in this report are provided in Appendix A.

2 INVENTORY

2.1 STRUCTURES

Virginia Responsible Structures can be grouped into several categories. Tables in this section provide an overview of their number, type, size, and category. Some terms and abbreviations used in the tables are defined below:

- NBI Structures in the National Bridge Inventory
- NHS Structures on the National Highway System
- I Structures carrying Interstate Highway System traffic
- P Structures carrying Primary Highway System traffic
- S Structures carrying Secondary Highway System traffic
- U Structures carrying Urban Highway System traffic

Number of Structures by District, Highway System and Category **NBI on NHS** NBI **All Structures** Ρ S&U Р Т Total S&U Total S&U **Total District** Т ı 1 Bristol 163 2,009 162 174 337 3,402 525 1,321 1 215 958 2,229 2 Salem 139 1,236 1,831 137 232 373 210 2,034 3,066 456 4 822 0 414 1,367 0 2 219 0 659 2,073 3 Lynchburg 953 217 1,414 4 Richmond 363 578 1,021 1,962 350 361 25 736 520 783 1,298 2,601 5 H. Roads* 378 383 674 1,435 369 232 78 679 459 467 808 1,734 6 Fburg* 45 542 112 80 490 824 177 320 45 6 163 254 7 Culpeper 85 244 713 1,042 83 95 4 182 121 495 1,086 1,702 2 255 457 1,157 1,869 248 155 405 431 828 2,235 3,494 8 Staunton 9 NOVA* 295 407 846 1,548 289 329 33 651 388 558 1,312 2,258 13,605 3,745 2.424 1.723 3.641 8,241 1,683 1,907 155 5.824 12,906 21,154 Total

Table 2-1- Number of Structures

*Note: Tables in this report use the abbreviations "H.Roads" for Hampton Roads, "F'burg" for Fredericksburg, and NOVA for Northern Virginia. These abbreviations are necessary to allow a clearer presentation of data.

The "All Structures" category in Table 2-1 and Table 2-2 includes both NBI and Non-NBI structures. Note that the definition of an NBI structure is different than the definition of structures on the National Highway System (NHS), so not all structures on the NHS are in the NBI, nor are all NBI structures on the NHS. Virginia also maintains a large inventory of smaller culverts that are not included in the inventory of the Structure and Bridge Division because their total opening size is less than 36 square feet. These smaller structures have separate maintenance and inspection cycles and are not addressed in this report.

	Area of Structures by District, Highway System and Category (Millions of Square Feet)											
		N	BI		NBI on NHS			All Structures				
District	I	Р	S&U	Total	ı	Р	S&U	Total	ı	Р	S&U	Total
1 Bristol	1.5	3.3	2.4	7.2	1.5	1.5	0.0	3.0	1.6	3.6	2.7	7.8
2 Salem	1.3	4.0	3.0	8.3	1.3	2.4	0.0	3.8	1.4	4.2	3.3	8.8
3 Lynchburg	0.0	3.9	2.4	6.3	0.0	2.5	0.0	2.5	0.0	4.0	2.6	6.6
4 Richmond	5.7	8.9	4.4	19.0	5.6	7.0	0.4	13.0	5.9	9.0	4.5	19.4
5 H. Roads	10.6	15.3	4.1	30.0	10.5	12.6	1.5	24.6	10.7	15.4	4.1	30.2
6 Fburg	0.4	2.9	1.1	4.5	0.4	2.0	0.1	2.5	0.5	3.0	1.1	4.6
7 Culpeper	0.8	1.4	1.5	3.7	0.8	0.7	0.0	1.6	8.0	1.5	1.7	4.0
8 Staunton	2.5	3.2	2.9	8.6	2.5	1.6	0.0	4.1	2.6	3.4	3.2	9.3
9 NOVA	8.0	5.8	5.3	19.2	7.9	5.1	0.5	13.4	8.1	6.2	5.6	19.9
Total	30.9	48.7	27.1	106.8	30.5	35.4	2.6	68.5	31.5	50.2	28.8	110.5

Table 2-2- Area of Structures

2.2 INVENTORY CHANGES FROM PREVIOUS YEARS

Some of the charts in the report provide multi-year trends for various performance measures. Inventory numbers provided in this report for the years 2007-2011 may vary slightly from numbers provided in previous editions of this report. These differences are primarily due to a change in the reporting period. Reports from 2007 through 2011 were based on a calendar year (January 1 through December 31), whereas subsequent reports were based on the fiscal year (July 1 through June 30). This change was made to align the reporting period of the State of the Structures Report with the fiscal year and with reports developed by other VDOT divisions.

Other factors causing differences between this report and previous editions of this report include:

- Buchanan County Bridges Added to Inventory: In Fiscal Year 2012 Virginia added to its inventory 144 existing structures from Buchanan County in the Bristol District. Buchanan County retains responsibility for these bridges.
- Change in Highway System Designation of Buchanan County Bridges: In Fiscal Year 2013 the system designation of the recently added bridges from Buchanan County was changed from Secondary to Urban.
- Norfolk Southern Railway Agreement: In Fiscal Year 2014, VDOT transferred
 the ownership and maintenance responsibility for 15 railroad bridges to the Norfolk
 Southern Railway (NS). The agreement also caused the transfer of ownership and
 maintenance responsibility of 31 highway bridges crossing the NS railroad from
 NS to VDOT.
- NHS: In 2015, VDOT redefined the particular routes that constitute Virginia's portion of the NHS, which resulted in the removal or addition of certain structures to the NHS. This redesignation effort was performed in accordance with FHWA requirements. The historic data used for the tables and charts were updated to reflect the current NHS designation.

 Areas for all Structures: For previous reports, areas for culverts were computed based on barrel length of culvert times culvert width. For the current report, bridge and culvert area is based on the FHWA Computation Procedure for the Bridge Condition Measures. Length is based on NBI Item 49 (Structure Length) and width is based on NBI Item 52 (Deck Width) or Item 32 (Approach Roadway) for culverts where the roadway is on a fill (i.e., traffic does not directly run on the top slab (or wearing surface) of the culvert).

Figure 2-1, Figure 2-2, and Figure 2-3 provide data on the ages of Virginia Responsible Structures.

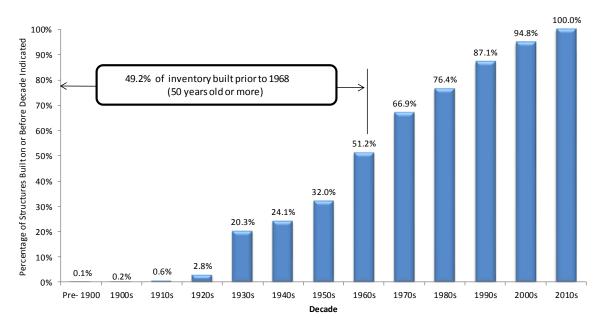


Figure 2-1- Cumulative Age Distribution of Structures

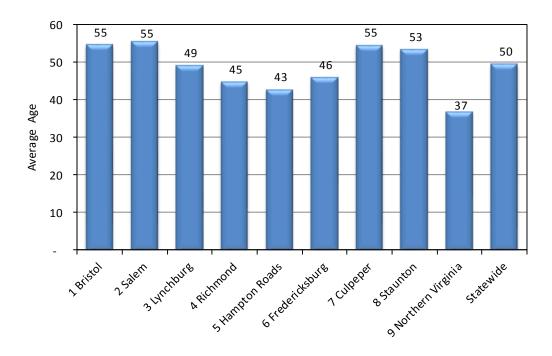


Figure 2-2- Average Age of Structures by District

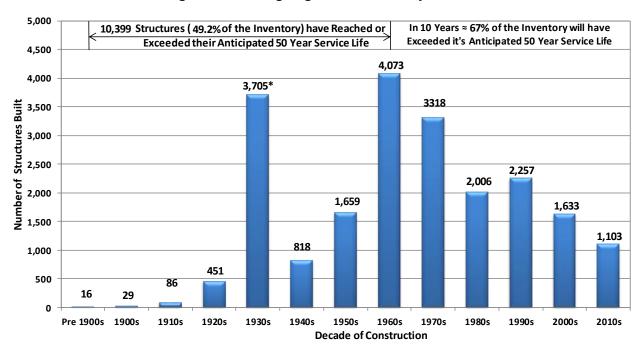


Figure 2-3- Number of Structures Built by Decade

*A large number of county bridges were added to the VDOT inventory during this period with unknown construction dates. Structures with unknown construction dates have been assumed to have year built in the 1930s.

2.3 CATEGORIES OF STRUCTURES

Given the large number and broad geographic distribution of Virginia Responsible Structures, it is often convenient to use structure categories to better understand their needs and rates of deterioration. Figure 2-4 through Figure 2-9 provide inventory data for 14 different categories of structures. These categories describe both material type and structural system used. As these charts show, the performance and durability vary considerably between categories, with large concrete culverts showing the greatest durability and timber deck bridges, T-beams, and large metal culverts displaying the least favorable performance.

These charts provide the number of structures in "Good", "Fair", and "Poor" conditions in each structure category. Section 3 of this report provides a detailed definition of the "Good", "Fair", and "Poor" designations.

VDOT has also identified a group of "Special Structures" with characteristics that warrant additional consideration for maintenance, repair, and funding. These structures are large and/or complex and play a critical role in the function of the transportation network. They include large and complex bridges, movable bridges, and tunnels. A list of the special structures is provided in Table 2-3.

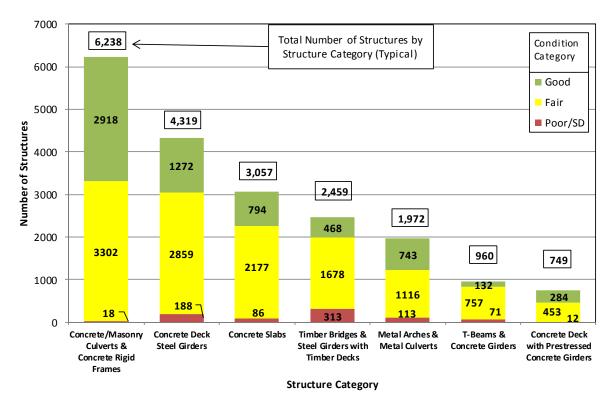


Figure 2-4- Count and Condition Data for Most Common Structure Categories (All Structures)

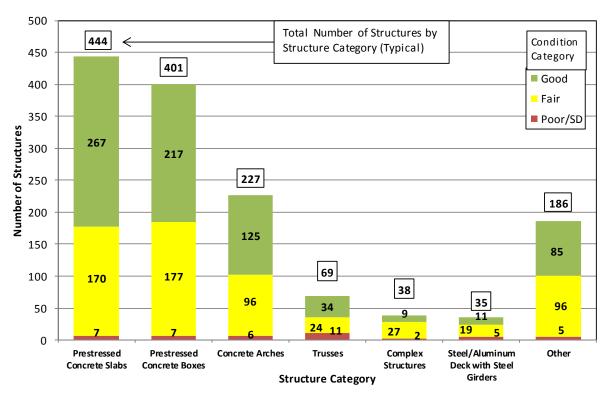


Figure 2-5- Count and Condition Data for Less Common Structure Categories (All Structures)

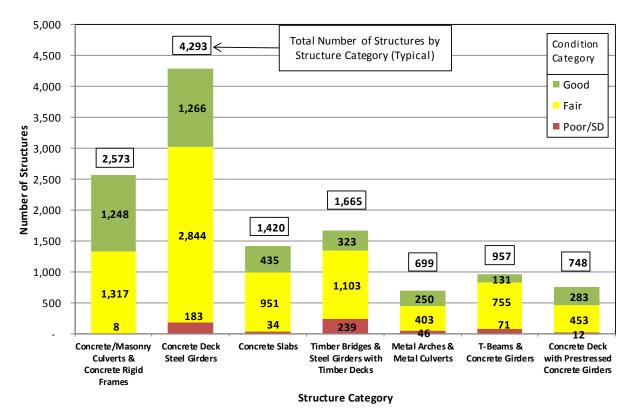


Figure 2-6- Count and Condition Data for Most Common Structure Categories (NBI Structures)

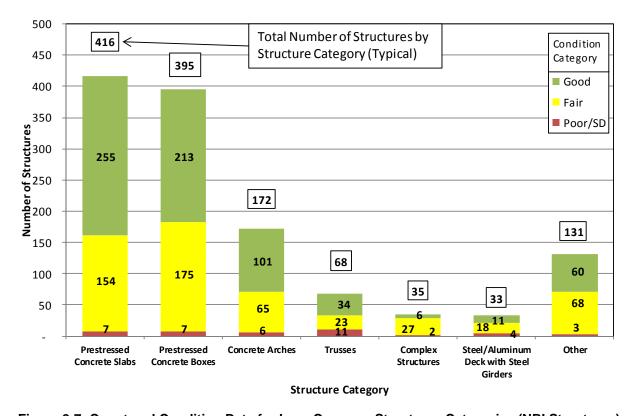


Figure 2-7- Count and Condition Data for Less Common Structures Categories (NBI Structures)

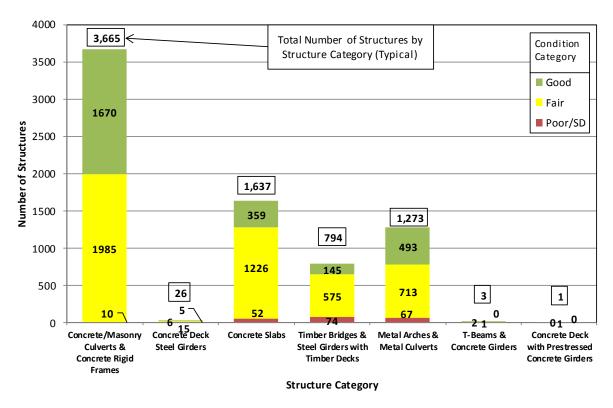


Figure 2-8- Count and Condition Data for Most Common Structure Categories (Non-NBI Structures)

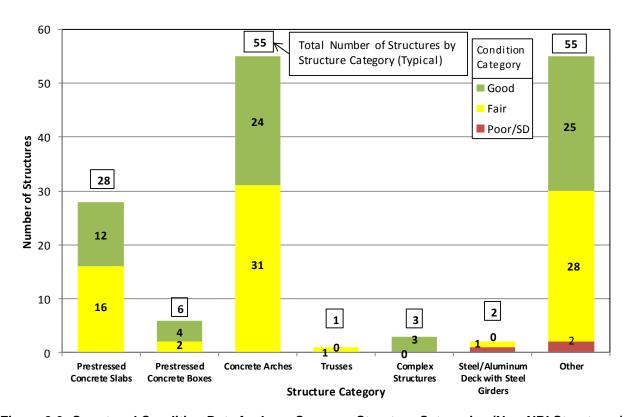


Figure 2-9- Count and Condition Data for Less Common Structure Categories (Non-NBI Structures)

Table 2-3- VDOT's Special Structures

	STRUCTURE NAME	ROUTE CARRIED	DISTRICT
	Big Walker Mountain	I-77	Bristol
	East River Mountain	I-77	Bristol
S	Hampton Roads Bridge Tunnels (HRBT) – 2 Tunnels	I-64	Hampton Roads
TUNNELS	Monitor Merrimac Memorial Bridge Tunnel (MMBT)	I-664	Hampton Roads
2	Elizabeth River Downtown Tunnels – 2 Tunnels	I-264	Hampton Roads
	Elizabeth River Midtown Tunnels – 2 Tunnels	Rt. 58	Hampton Roads
	Rosslyn Tunnel	I-66	Northern Virginia
	Chincoteague Bridge	Rt. 175	Hampton Roads
	High Rise Bridge	I-64	Hampton Roads
OGES	Berkley Bridge	I-264	Hampton Roads
BRII	Coleman Bridge	Rt. 17	Hampton Roads
MOVABLE BRIDGES	James River Bridge	Rt. 17	Hampton Roads
MOV	Benjamin Harrison Bridge	Rt. 156	Richmond
	Eltham Bridge	Rt. 30/33	Fredericksburg
	Gwynn Island Bridge	Rt. 223	Fredericksburg
	Varina-Enon Bridge	I-295	Richmond
	Norris Bridge	Rt. 3	Fredericksburg
RES	HRBT Approach Bridges	I-64	Hampton Roads
	I-64 over Willoughby Bay	I-64	Hampton Roads
TRUC	MMMBT Approach Bridges	I-664	Hampton Roads
EX S	James River Bridge Approach Spans	Rt. 17	Hampton Roads
COMPLEX STRUCTU	High Rise Bridge Approach Spans	I-64	Hampton Roads
8	Pocahontas Parkway over James River	Rt. 895	Richmond
	Smart Road Bridges	Smart Rd.	Salem
	460 Connector Bridges	Rt. 460	Bristol

2.4 ANCILLARY STRUCTURES

VDOT is also responsible for the inventory, inspection, and maintenance of 34,730 ancillary structures. VDOT's inventory includes five types of ancillary structures, three of which are further divided into subcategories:

- 1. High mast lighting structures
- 2. Camera pole structures
- 3. Signal structures
 - a. Span wire
 - b. Cantilever
- 4. Luminaires
 - a. Ground mounted
- 5. Sign structures
 - a. Overhead span
 - b. Cantilever
 - c. Butterfly
 - d. Bridge-parapet mounted

Figure 2-10 and Figure 2-11 indicate the distribution of the ancillary structures by district and type.

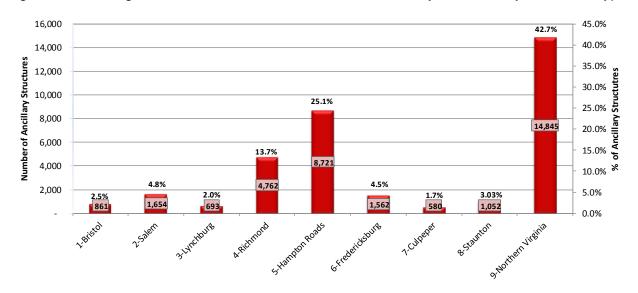


Figure 2-10- Distribution of Ancillary Structures by District

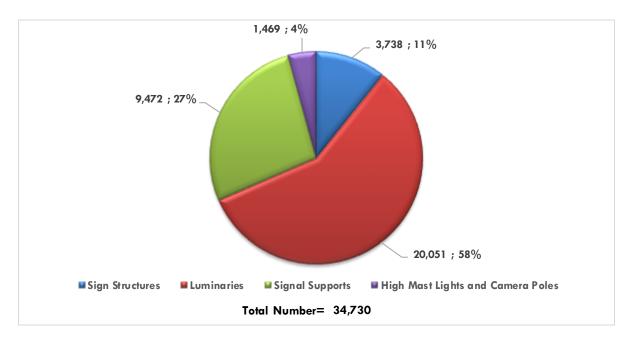


Figure 2-11- Distribution of Ancillary Structures by Type

3 CONDITION

3.1 CONDITION CATEGORIES (GOOD, FAIR, AND POOR (SD) STRUCTURES)

A true system preservation program extends the service life of structures. This requires a balanced approach, wherein work is performed on structures in all condition categories (Good, Fair and Poor (SD)). In order to provide an easily-understood organizational system, structures are placed in one of these three condition categories based on the minimum General Condition Rating (GCR) of each structure.

The GCR is a numerical rating of the primary components of each structure assigned during regular safety inspections. Definitions of GCRs are provided in the FHWA's "Recording and Coding Guide for the Structure Inventory and Appraisal of the Nation's Bridges".

Descriptions of GCRs are also provided in Appendix D of this report. Measured on a 0-9 scale, with 0 representing a failed structure and a 9 representing excellent condition, a GCR is assigned to each bridge's deck, superstructure, and substructure components at each inspection. Large culverts receive a single GCR. The structures are inspected in accordance with federal criteria and VDOT's Instructional and Informational Memorandum IIM-S&B-27. The minimum GCR for each bridge or large culvert is used to define its condition category. Definitions of the three condition categories are shown in Table 3-1.

Condition CategoryCategory DefinitionGood StructuresMinimum GCR \geq 7Fair StructuresMinimum GCR = 5 or 6Poor (SD) StructuresMinimum GCR \leq 4

Table 3-1- Condition Categories for Structures

In prior years, Virginia used a slightly different definition for "Good", and "Fair" structures. Formerly, Virginia defined a Fair structure as a structure with a minimum GCR equal to 5 and Good structure as a structure with a minimum GCR equal to 6 or more.

3.2 Performance Goals

3.2.1 General

Performance measurement is an essential tool for asset owners seeking to make the best use of limited funds. A sound performance measurement program requires years of work to identify and adopt a set of metrics that are meaningful, actionable, and practical to measure.

Virginia's maintenance program is large and complex, so in order to more easily direct its efforts, performance goals have been developed for each of the three condition categories described in the previous section (Good, Fair, and Poor (SD)). While Virginia has been using performance measures for many years, FHWA recently required states to track bridge conditions, establish performance targets, and report results. Therefore, Virginia now has two sets of performance targets: state and federal.

3.2.2 State Performance Management Measures

Virginia uses two types of performance management measures for determining the condition of structures in Virginia:

- Poor (SD) Performance Management Measures
- System Preservation Performance Management Measures

Poor (SD) Performance Management Measures: A structure is designated as Poor (SD) if one or more of the structure components, deck, superstructure, substructure or large culvert, has a GCR of 4 or less. Poor (SD) structures have deficient structural components that require the structure to be monitored and/or repaired. In some instances, these structures have been posted to restrict the weight of vehicles driving on the structure.

Virginia's overall goal for Poor (SD) structures is to limit their number to 4.5% of the overall inventory (95.5% non-Poor (SD)). Goals have also been established regarding the minimum percentage of non-Poor (SD) structures on each of the three highway systems. These targets, which apply statewide and to the nine construction districts individually are provided in Table 3-2 along with the previous targets. Figure 3-1, which provides a nine-year trend of the number and percentage of Good, Fair and Poor (SD) structures, shows that the number and percentage of Poor (SD) structures have been steadily decreasing, while the number and percentage of fair structures have been increasing.

Table 3-2- Virginia's non-Poor (SD) Targets

Highway System	Previous	Current	Current Statewide
riigiiway oyaciii	Target	Target	Performance
Interstates	97%	99%	98.8%
Primaries	94%	96%	96.7%
Secondaries	89%	94%	95.4%
All Systems Combined	92.0%	95.5%	96.0%

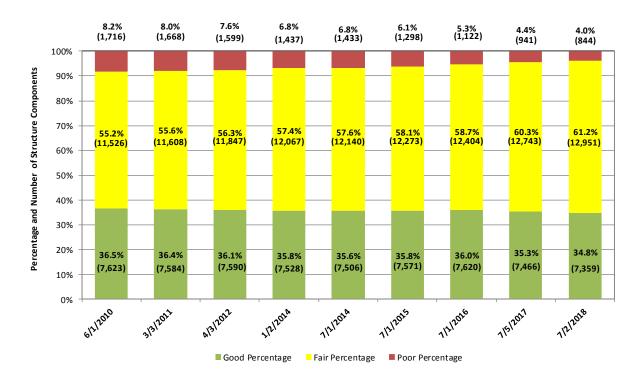


Figure 3-1: Percentage and Count of Structures in Good, Fair, and Poor Condition (Nine Year Trend)

System Preservation Performance Management Measures: Virginia's overall goal for Fair structures, as established in October 2017, is to reduce the number of structures in Fair Condition with a minimum GCR of 5 (Fair (5)) by 0.5% by July 1st, 2019. This is a significant challenge due to the age of the inventory. Table 3-3 provides the number of Fair (5) structures by highway system for the past three years. Although VDOT is making an effort to reduce the number of Fair (5) structures, many are deteriorating from Good or Fair (6) to Fair (5). Also, some of the Poor structures are being rehabilitated rather than replaced, causing them to become Fair (5) structures after improvements. As can be seen in Table 3-3, the number of Fair (5) structures is increasing.

Highway System	Number of Fair (5) Structures					
Highway System	07/2016	07/2017	07/2018			
Interstates	759	745	747			
Primaries	1,427	1,450	1,471			
Secondaries	2,706	2,738	2,719			
Urban	189	205	214			
All Systems Combined	5,081	5,138	5,151			

Table 3-3- Virginia's Count of Fair (5) Structures

Virginia also has recently established a performance goal for improving the conditions of bridge deck expansion joints. This important goal was established because leaking bridge deck expansion joints can cause significant damage to structures by allowing water and road salts to attack bridge girders and supports. The new goal is for the percentage of expansion joints in Condition State 1 (Good) or Condition State 2 (Fair) to improve by 0.5% from the baseline

established on October 1st, 2017 by December 31st, 2018. Currently, 83% of VDOT's expansion joints are in Condition State 1 or Condition State 2.

In addition to GCR, condition states are assigned to various bridge elements during bridge inspections. A condition state of 1 is "Good", 2 is "Fair", 3 is "Poor", and 4 is "Severe". Condition states provide more detailed information than GCRs about individual bridge elements. Information on the collection of condition state data may be found in the "Virginia Supplement to the AASHTO Manual for Bridge Element Inspection".

3.2.3 Virginia's Best Practices/Recommended Targets for System Sustainability

Chapter 32, Part 2, of the VDOT Manual of the Structure and Bridge Division establishes recommended targets for system sustainability as follows:

- Maintain 90% of expansion joints in a Condition State of 1
- Eliminate 2% of the deck expansion joints in each district in each fiscal year
- Perform maintenance activities on at least 6% of the number of structures with a minimum GCR of 5 in each district in each fiscal year
- Perform maintenance activities on at least 2% of the number of structures with a minimum GCR of 6 in each district in each fiscal year
- Meet established targets for Poor (SD) bridges on each highway system (see previous discussions

These recommended targets were determined using an analysis of the annual transition of VDOT's structures from one condition category to another. Recognizing that the bridge maintenance program requires a balanced approach, where the maintenance needs of structures in each of the three condition categories are regularly addressed, the analysis sought to establish thresholds that would achieve the goal of maintaining the average GCR of the existing inventory over time. There is no unique solution for these goals (various combinations of thresholds for Good, Fair and Poor could achieve the desired result of maintaining the average GCR).

Prior to establishing the actual thresholds, a transition study was performed to determine the number of structures whose minimum GCR either improves or deteriorates in any particular year. The initial study focused on the transition between 2009 and 2010, and the results of the study were used to establish a baseline and develop achievable goals for each condition category.

The study determined that system sustainability could be achieved with the goals that are now in Chapter 32. Furthermore, the Chapter 32 system sustainability goals above were deemed to be reasonably attainable with existing staff. However, the funding required to meet these goals remains significantly higher than the funding provided.

The numbers of the most recent year-to-year transitions are displayed in Figure 3-2, which depicts the number of structures that transitioned from one condition category to another or moved up or down within a condition category. For example, the figure shows that during FY2018, 345 structures fell from "Good" to "Fair" condition, and 89 structures were improved from "Fair" to "Good" condition.

Virginia performs an annual analysis to determine and report on the monetary needs for each of its assets. The financial needs for any particular asset are defined as the amount of funding required to reach stated performance goals, which have been established to maintain and improve the condition of Virginia's bridges.

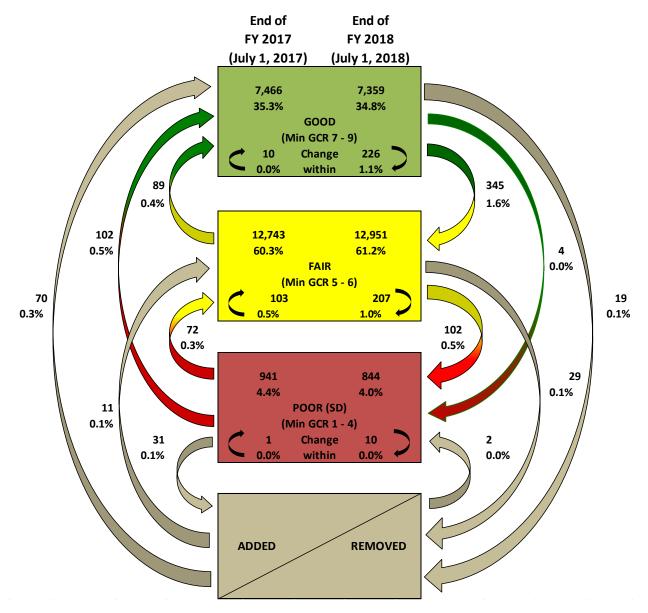


Figure 3-2- Annual Transitions of Good/Fair/Poor or Poor (SD) from End of FY 2017 to End of FY 2018

Note: Percentages based on total structures in the inventory from FY17 to FY18, inclusive of those permanently closed and/or removed over that time period.

3.2.4 Federal Performance Management Measures

The 2012 federal highway act known as "Moving Ahead for Progress in the 21st Century" (MAP21) requires states to develop Transportation Asset Management Plans (TAMPs). TAMPs track performance of various assets, including NBI structures on the NHS. Also, federal regulations require states to establish targets for their NBI structures on the NHS and to report their progress toward those targets. Performance measures and targets cover all bridges carrying the NHS, which includes on- and off-ramps connected to the NHS within a State, and bridges carrying the NHS that cross a State border.

Performance Management Measures for Poor (SD) Structures: There are two specific requirements associated with Poor (SD) bridges:

- 1. No more than 10% of the deck area of NBI structures on the NHS may be Poor (SD)
- 2. Each state must establish 2-year and 4-year goals for the percentage of Poor (SD) deck area of NBI structures on the NHS.

Table 3-4 shows the current status for Poor (SD) structures and Virginia's 2-year target is 3.5%, and its 4-year target is 3.0%. Table 3-5 shows the percentage of deck area of Poor (SD) NBI Structures on the NHS by district and highway system. Figure 3-3 shows the recent statewide trendline of Virginia Responsible Structures for the percentage of deck area of Poor (SD) NBI Structures on the NHS. Figure 3-4 shows the current percentage of deck area of Poor (SD) NBI Structures on the NHS by district.

Performance Management Measures for System Preservation for Good/Fair Structures: MAP-21 also requires states to establish 2-year and 4-year targets for the percentage of Good NBI structures on the NHS by deck area. As shown in Figure 3-5, Virginia's 2-year target is 33.5%, and its 4-year target is 33.0%. This projected decrease in the percentage of Good deck area reflects anticipated declines in structure conditions due to age and funding limits.

Figure 3-5 shows the recent statewide trendline of the percentage of deck area of NBI Structures on the NHS in Good condition. Figure 3-6 shows the current percentage of deck area of NBI Structures on the NHS in Good condition by district.

Percentage of Deck Area of NBI Bridges on the National Highway System								
Condition	Virginia's 2 year Target 2020	Virginia's 4 year Target 2022	Federal Limit	Current Status				
Good	33.5%	33.0%	-	33.1%				
Poor (SD)	3.5%	3.0%	10.0%	3.3%				

Table 3-4- Virginia's Status with FHWA's Required Performance Targets

Table 3-5- Percentage of Deck Area of Poor (SD) NBI Structures on the NHS by District and Highway System

District	Percentage of Poor (SD) Deck Area of NBI Bridges on NHS				
	Interstate	Primary	Secondary	Urban	All
1 Bristol	5.6%	3.4%	0.0%	100.0%	4.6%
2 Salem	6.3%	2.2%	0.0%	0.0%	3.6%
3 Lynchburg	0.0%	1.0%	0.0%	0.0%	1.0%
4 Richmond	6.0%	4.0%	0.0%	17.2%	4.8%
5 Hampton Roads	3.0%	2.4%	0.0%	0.0%	2.5%
6 Fredericksburg	6.1%	18.3%	0.0%	0.0%	15.5%
7 Culpeper	0.0%	8.5%	0.0%	0.0%	3.8%
8 Staunton	0.3%	4.9%	0.0%	0.0%	2.1%
9 NOVA	0.3%	2.8%	0.6%	0.0%	1.3%
Statewide	2.9%	3.8%	0.3%	0.9%	3.3%

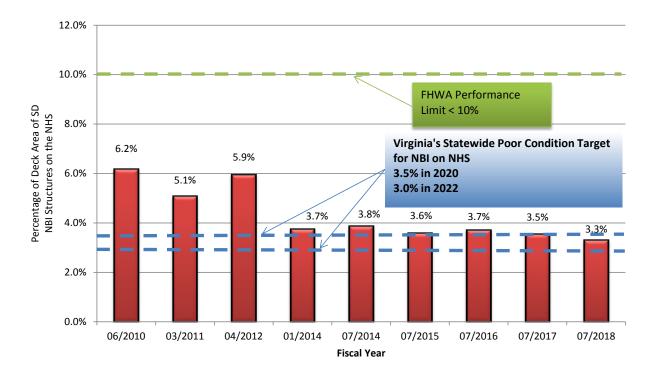


Figure 3-3- Percentage of Deck Area of Poor (SD) NBI Structures on the NHS by Year

Figure 3-4- Percentage of Deck Area of Poor (SD) NBI Structures on the NHS by District

* Fredericksburg District currently has two Poor (SD) structures with large deck areas leading to a large percentage of SD deck area.

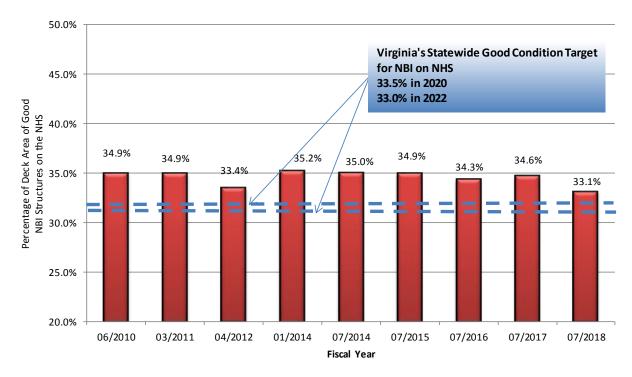


Figure 3-5- Percentage of Deck Area of NBI Structures on the NHS in Good Condition by Year

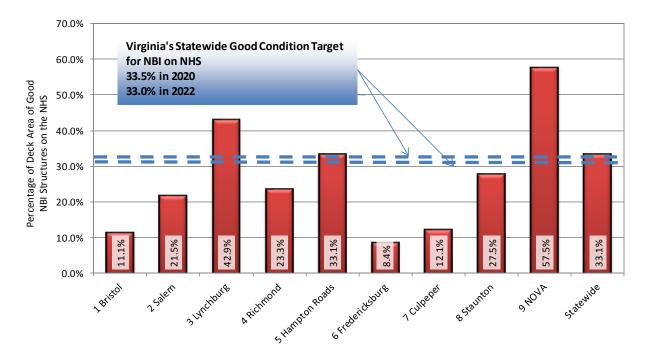


Figure 3-6- Percentage of Deck Area of NBI Structures on the NHS in Good Condition by District

3.2.5 Targets for Chief Engineer's Quarterly Report

VDOT emphasizes the establishment of objectively measured goals and the regular reporting of progress toward those goals. VDOT's Chief Engineer holds a quarterly meeting with its division administrators during which a status update is provided. Prior to the meeting, a report is produced that includes graphs showing each division's progress toward the state and federal performance management metrics. Figure 3-7 shows the statewide status report provided by the Structure and Bridge Division for July, 2018 using the Chief Engineer's Quarterly Report format. The Chief Engineer's Quarterly Report tracks the goals below:

- Exceed 95.5% non-Poor (SD) structures for both NBI and Non-NBI structures and NBI structures alone by December 31, 2019
- Improve the percentage of joints in condition states 1 and 2 by 0.5% from the baseline established on October 1, 2017 by the end of the calendar year 2018
- Reduce the number of Fair (5) structures by 0.5% from the baseline established on October 1, 2017 for both NBI and Non-NBI structures and NBI structures alone by the end of FY 2019
- A long term goal is to have 99% of structures non-Poor (SD) and to have zero Poor (SD) structures on the interstate system

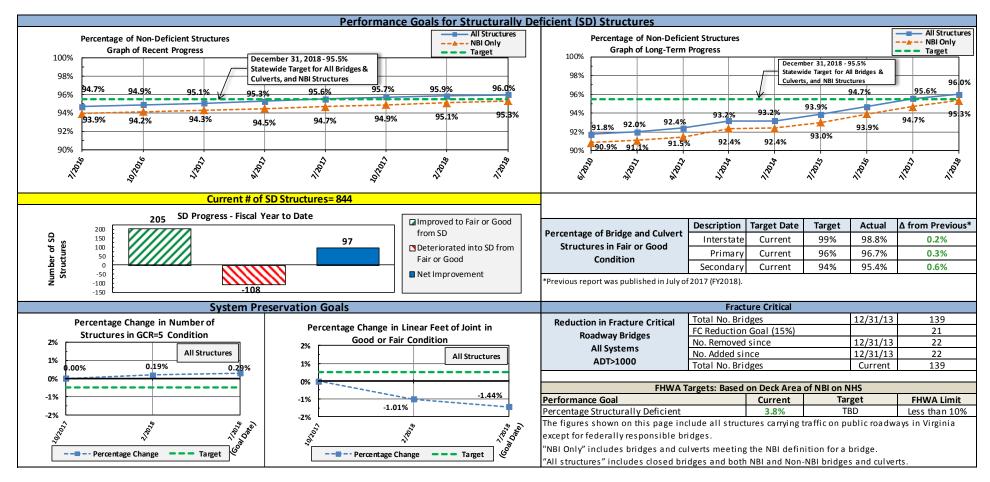


Figure 3-7- Chief Engineer's Quarterly Report for July 2018

3.3 CURRENT CONDITIONS - STRUCTURES

The following pages contain charts and tables providing information about the current conditions of the Virginia Responsible Structures. The charts and tables detail the current state of Virginia's Poor (SD) and weight-posted structures, as well as information about the percentage of Good, Fair, and Poor structures. They are generally self-explanatory and are thus provided without narrative.

Additional inventory information on the Virginia Responsible Structures:

- Figure 3-8 addresses Poor (SD) Structures by count
- Figure 3-9 addresses Poor (SD) NBI structures on the NHS by count
- Figure 3-10 through Figure 3-13 address Poor (SD) structures by system and by count
- Figure 3-14 and Table 3-6 address deck area of NBI structures on the NHS
- Figure 3-15 and Table 3-7 address deck area of Poor (SD) NBI structures on the NHS
- Figure 3-16 and Table 3-8 address the deck area of all structures
- Figure 3-17 and Table 3-9 address Poor (SD) deck area
- Figure 3-18 and Table 3-11 address weight-posted deck area

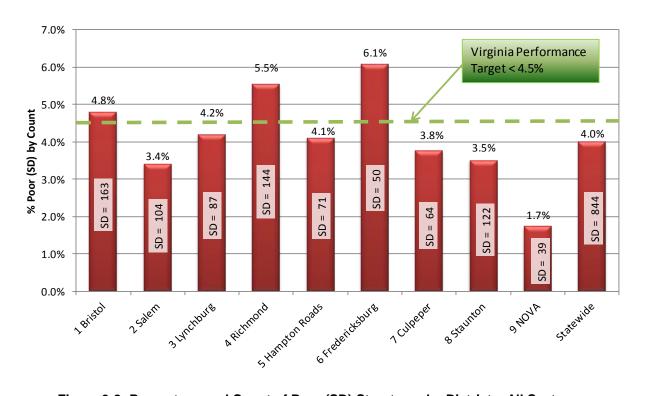


Figure 3-8- Percentage and Count of Poor (SD) Structures by District - All Systems

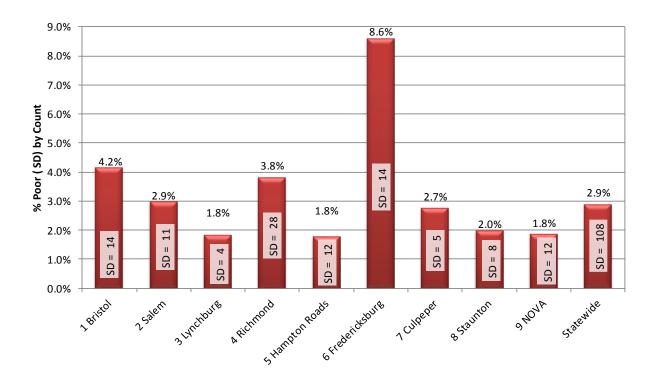


Figure 3-9- Percentage and Count of Poor (SD) NBI Structures on the NHS by District

Note: The Fredericksburg District has very few NBI structures on the NHS, so a small number of Poor (SD) structures have a very large effect on the Poor (SD) percentage.

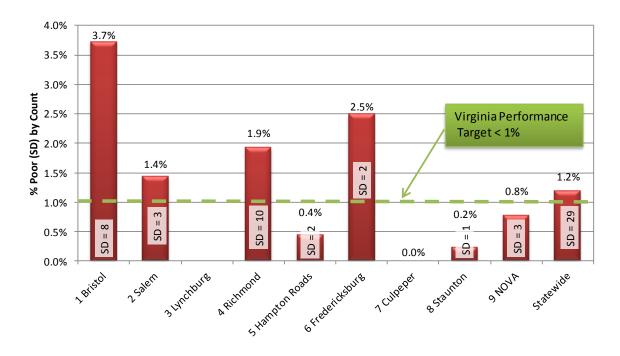


Figure 3-10- Percentage and Count of Poor (SD) Structures on Interstate System by District

Note: Districts with a smaller number of NBI structures on the NHS tend to have a larger percentage of Poor (SD) structures

Figure 3-11- Percentage and Count of Poor (SD) Structures on Primary System by District

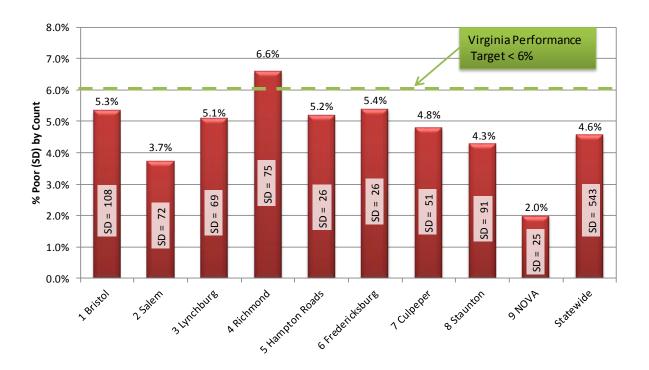


Figure 3-12- Percentage and Count of Poor (SD) Structures on Secondary System by District

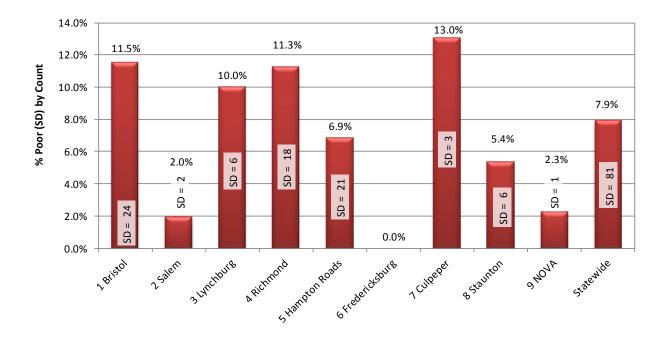


Figure 3-13- Percentage of Poor (SD) Structures on Urban System by District

3.3.1 Progress towards Federal Performance Targets

Figure 3-14 and Table 3-6 show the deck area of NBI structures on the NHS. Figure 3-15 and Table 3-7 show the Poor (SD) deck area for NBI structures on the NHS. Figure 3-15 shows that the total Poor (SD) deck area is 2,251,144 square feet, which is well below the FHWA limit of 6,854,890 square feet.

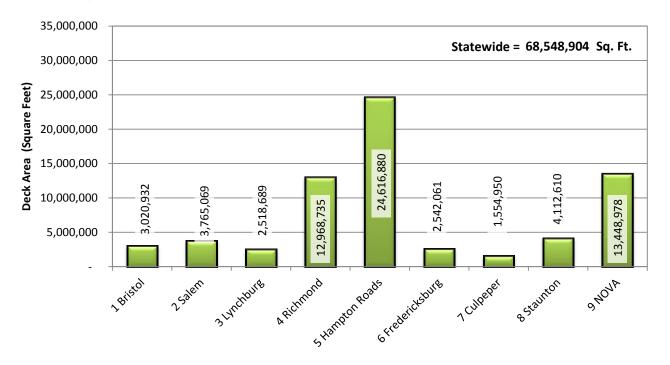


Figure 3-14- Deck Area of NBI Structures on NHS by District

Table 3-6- Deck Area of NBI Structures on NHS by District and Highway System

District	Deck Area of NBI Structures on NHS (Square Feet)							
District	Interstate	Primary	Secondary	Urban	Total			
1 Bristol	1,508,564	1,508,031	0	4,337	3,020,932			
2 Salem	1,298,988	2,429,787	1,668	34,625	3,765,069			
3 Lynchburg	N/A	2,513,238	5,451	0	2,518,689			
4 Richmond	5,626,322	6,952,150	326,876	63,387	12,968,735			
5 Hampton Roads	10,481,466	12,606,771	79,482	1,449,161	24,616,880			
6 Fredericksburg	430,624	2,010,469	64,286	36,683	2,542,061			
7 Culpeper	815,039	705,282	29,173	5,457	1,554,950			
8 Staunton	2,490,505	1,600,870	0	21,234	4,112,610			
9 NOVA	7,880,162	5,063,585	505,232	0	13,448,978			
Statewide	30,531,670	35,390,182	1,012,168	1,614,884	68,548,904			

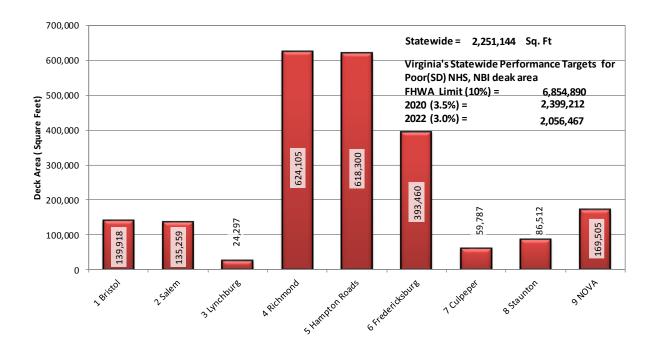


Figure 3-15- Deck Area of Poor (SD) NBI Structures on NHS by District

Table 3-7- Deck Area of Poor (SD) NBI Structures on NHS by District and Highway System

District	Area of Poor (SD) NBI Structures on NHS By Highway System							
District	Interstate	Primary	Secondary	Urban	Total			
1 Bristol	83,884	51,696	0	4,337	139,918			
2 Salem	81,246	54,014	0	0	135,259			
3 Lynchburg	N/A	24,297	0	0	24,297			
4 Richmond	335,475	277,750	0	10,880	624,105			
5 Hampton Roads	311,942	306,358	0	0	618,300			
6 Fredericksburg	26,280	367,180	0	0	393,460			
7 Culpeper	0	59,787	0	0	59,787			
8 Staunton	8,614	77,898	0	0	86,512			
9 NOVA	24,370	142,005	3,130	0	169,505			
Statewide	871,811	1,360,985	3,130	15,217	2,251,144			

3.3.2 Condition Data - Deck Area and Weight-Posted Structures

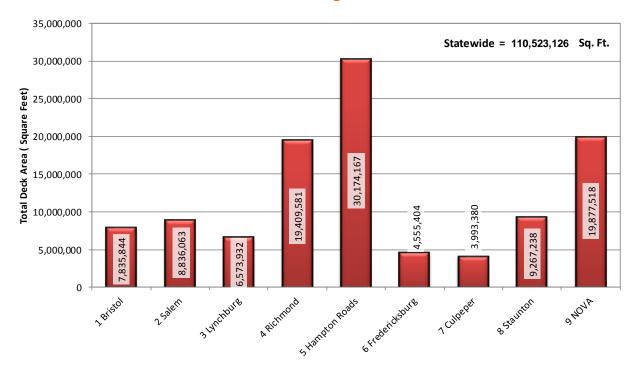


Figure 3-16- Total Deck Area of All Structures by District

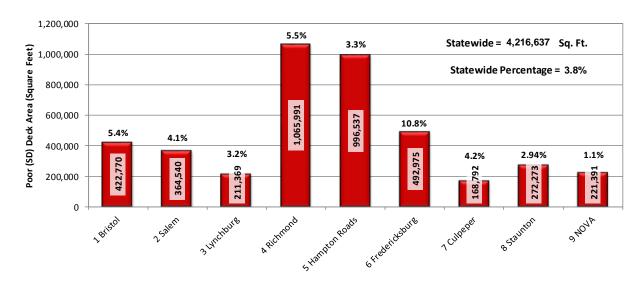


Figure 3-17- Deck Area of Poor (SD) Structures by District

Table 3-8- Deck Area of All Structures by District and Highway System

District	Area of All Structures (Sq. Ft.) By Highway System							
District	Interstate	Primary	Secondary	Urban	Total			
1 Bristol	1,577,355	3,552,030	2,397,805	308,654	7,835,844			
2 Salem	1,352,574	4,211,359	2,622,867	649,263	8,836,063			
3 Lynchburg	N/A	4,019,021	2,152,322	402,588	6,573,932			
4 Richmond	5,870,364	9,021,383	3,513,649	1,004,185	19,409,581			
5 Hampton Roads	10,678,757	15,382,188	1,177,317	2,935,904	30,174,167			
6 Fredericksburg	450,488	2,957,631	1,091,054	56,230	4,555,404			
7 Culpeper	842,931	1,495,313	1,575,209	79,928	3,993,380			
8 Staunton	2,641,594	3,377,389	2,832,563	415,692	9,267,238			
9 NOVA	8,118,712	6,178,627	5,280,364	299,815	19,877,518			
Statewide	31,532,775	50,194,941	22,643,151	6,152,259	110,523,126			

Table 3-9- Deck Area of Poor (SD) Structures by District and Highway System

District	Area of Poor (SD) Structures (Sq. Ft.) By Highway System						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	83,884	152,386	104,113	82,388	422,770		
2 Salem	81,246	136,511	143,138	3,645	364,540		
3 Lynchburg	N/A	97,169	59,402	54,798	211,369		
4 Richmond	335,475	481,574	127,162	121,779	1,065,991		
5 Hampton Roads	311,942	594,104	41,475	49,016	996,537		
6 Fredericksburg	26,280	433,517	33,177	0	492,975		
7 Culpeper	0	99,214	53,680	15,898	168,792		
8 Staunton	8,614	131,997	106,564	25,099	272,273		
9 NOVA	27,401	143,361	49,898	731	221,391		
Statewide	874,842	2,269,832	718,609	353,355	4,216,637		

Table 3-10- Percentage of Poor (SD) Condition Deck Area by District and Highway System

District	Percentage of Poor (SD) Deck Area						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	5.3%	4.3%	4.3%	26.7%	5.4%		
2 Salem	6.0%	3.2%	5.5%	0.6%	4.1%		
3 Lynchburg	N/A	2.4%	2.8%	13.6%	3.2%		
4 Richmond	5.7%	5.3%	3.6%	12.1%	5.5%		
5 Hampton Roads	2.9%	3.9%	3.5%	1.7%	3.3%		
6 Fredericksburg	5.8%	14.7%	3.0%	0.0%	10.8%		
7 Culpeper	0.0%	6.6%	3.4%	19.9%	4.2%		
8 Staunton	0.3%	3.9%	3.8%	6.0%	2.9%		
9 NOVA	0.3%	2.3%	0.9%	0.2%	1.1%		
Statewide	2.8%	4.5%	3.2%	5.7%	3.8%		

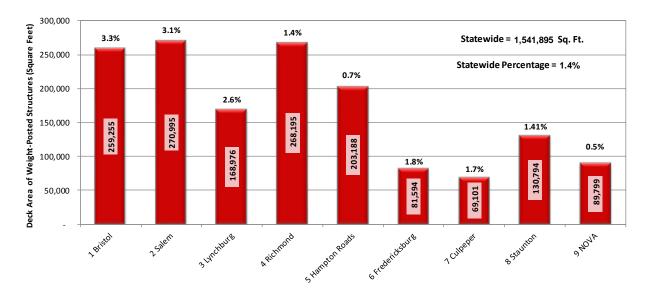


Figure 3-18- Deck Area of Weight-Posted Structures by District

Table 3-11- Deck Area of Weight-Posted Structures by District and Highway System

District	Deck Area of Weight-Posted Structures (Square Feet)							
DISTICT	Interstate	Primary	Secondary	Urban	Grand Total			
1 Bristol	0	47,509	124,813	86,932	259,255			
2 Salem	0	29,416	234,393	7,186	270,995			
3 Lynchburg	N/A	38,520	124,136	6,320	168,976			
4 Richmond	0	99,815	151,672	16,708	268,195			
5 Hampton Roads	0	122,310	56,439	24,439	203,188			
6 Fredericksburg	0	56,019	25,575	1	81,594			
7 Culpeper	0	7,380	56,729	4,992	69,101			
8 Staunton	0	7,426	113,628	9,739	130,794			
9 NOVA	0	50,638	38,430	731	89,799			
Statewide	0	459,034	925,814	157,047	1,541,895			

Total

High Mast and Camera Poles

3.4 CURRENT CONDITIONS - ANCILLARY STRUCTURES

Conditions of ancillary structures are summarized in Table 3-12 and Figure 3-19. The condition ratings for ancillary structures has been limited to 5 ratings which represents a change from previous years, where 10 ratings, correlating to the GCRs for bridges were coded. These five categories are Good (7), Fair (5), Poor (4), Critical (2), and Failed Condition (0). The major components that are rated are foundation, parapet mount (signs only) and superstructure.

Structure Type	Condition Categories (No. of Structures)			Condition Categories			
	Good	Fair	Poor	Good	Fair	Poor	
Sign	1,163	1,330	981	33.5%	38.3%	28.2%	
Luminaires	6,663	7,020	6,368	33.2%	35.0%	31.8%	
Signal	3,146	3,039	3,287	33.2%	32.1%	34.7%	

408

11,797

163

10,799

61.1%

34.4%

27.8%

34.2%

11.1%

31.3%

898

11,870

Table 3-12- Ancillary Structures Minimum General Condition Rating by Structure Type

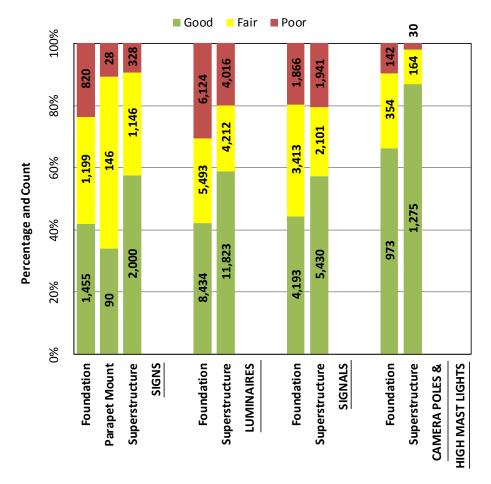


Figure 3-19- Statewide Ancillary Structure Condition by Asset Type

3.5 CONDITION TRENDS - GENERAL

Table 3-13 and Table 3-14 show the number of Poor (SD) structures by district and the changes that occurred during FY 2018.

Table 3-13- Change in Number of Poor (SD) Structures during FY2018

District	Number of Poor (SD) Structures					
District	07/2017	07/2018	% Change			
1 Bristol	192	163	-15.1%			
2 Salem	128	104	-18.8%			
3 Lynchburg	86	87	1.2%			
4 Richmond	148	144	-2.7%			
5 Hampton Roads	68	71	4.4%			
6 Fredericksburg	66	50	-24.2%			
7 Culpeper	73	64	-12.3%			
8 Staunton	144	122	-15.3%			
9 NOVA	36	39	8.3%			
Statewide	941	844	-10.3%			

Table 3-14- Type of Change in Number of Structures in Poor Condition (SD) during FY2018

District	Number of Poor Structures Improved	Number of Structures Deteriorated into Poor State	Net Change
1 Bristol	47	18	-29
2 Salem	32	8	-24
3 Lynchburg	21	22	1
4 Richmond	25	21	-4
5 Hampton Roads	12	15	3
6 Fredericksburg	20	4	-16
7 Culpeper	14	5	-9
8 Staunton	28	6	-22
9 NOVA	6	9	3
Statewide	205	108	-97

Note: Net change = Number of structures deteriorated to Poor (SD) status – Number of Poor (SD) structures restored or removed.

Figure 3-20 through Figure 3-24 provide the percentage and total number of Poor (SD) structures for each of the Virginia Highway Systems for the last nine years. The red lines indicate the percentage of structures that are Poor (SD) and the blue bars show the number of Poor (SD) structures.

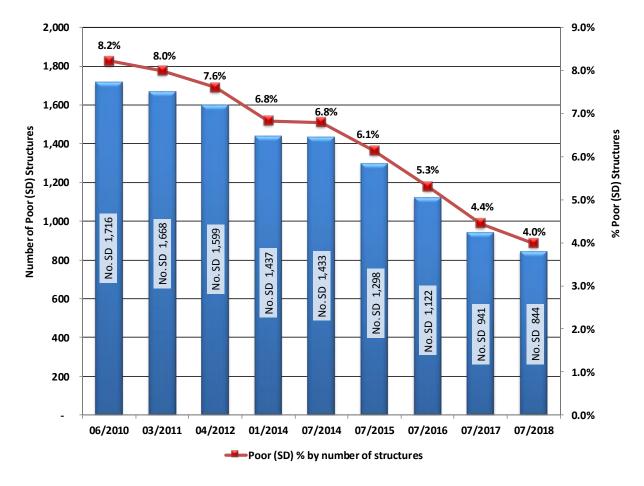


Figure 3-20- Percentage of Poor (SD) Structures - Recent Trends on All Systems

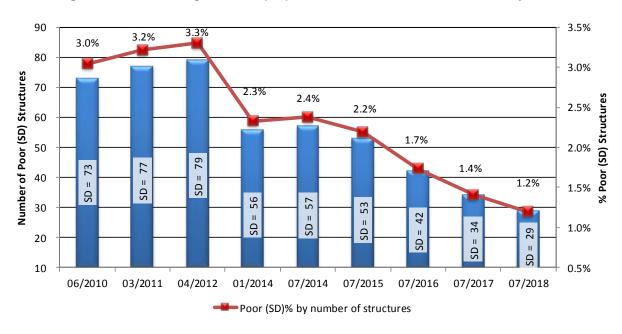


Figure 3-21- Percentage of Poor (SD) Structures - Recent Trends for Interstate System

Note: A large effort was made between 04/2012 and 01/2014 to repair Interstate structures in order to reduce the number of Poor (SD) structures.

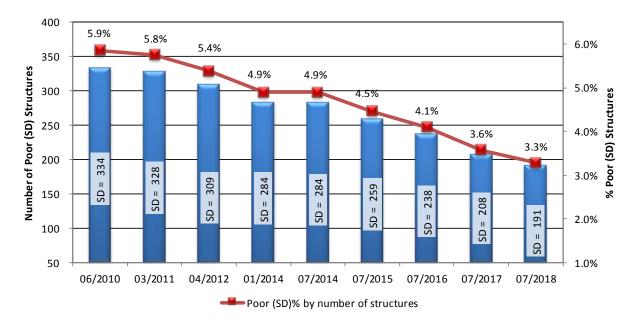


Figure 3-22- Percentage of Poor (SD) Structures - Recent Trends for Primary System

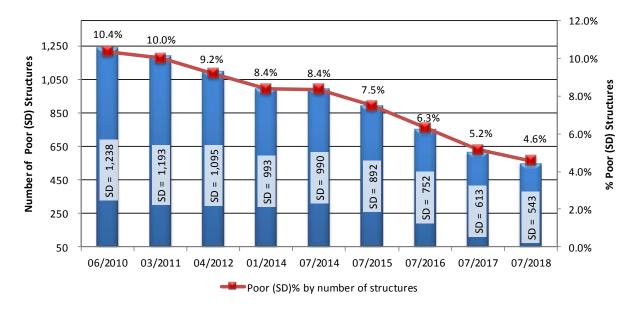


Figure 3-23- Percentage of Poor (SD) Structures - Recent Trends for Secondary System

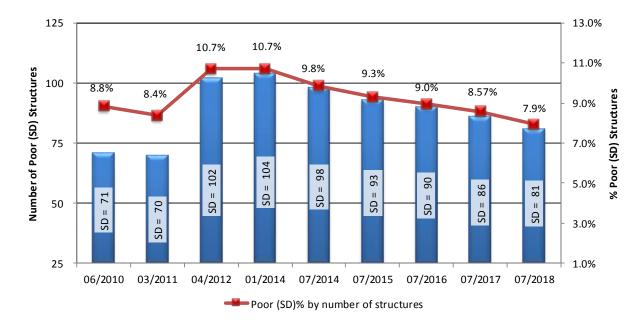


Figure 3-24- Percentage of Poor (SD) Structures - Recent Trends for Urban System

Note: A large number of Poor (SD) Structures were added in Buchanan County in 2012. Readers are advised to see notes on page 8 of this report.

Figure 3-25 compares the percentage of Poor (SD) structures in Virginia vs the nation as a whole from 2000 to 2017.

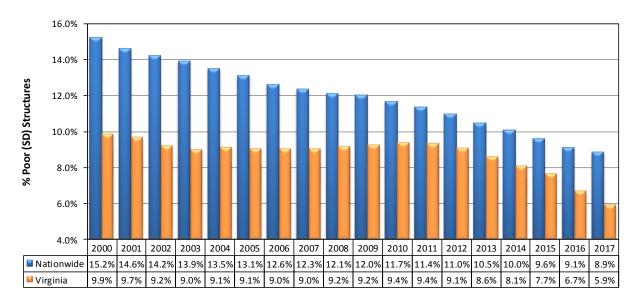


Figure 3-25- Comparing Virginia's NBI Poor (SD) Structures to the National Average

Note: Data in the figure are from FHWA's database, which includes both Virginia Responsible Structures and Federally Responsible Structures which, along with different reporting dates results in slight differences from the information reported elsewhere in this report. The data is submitted by all states and federal agencies to FHWA in March of each year. FHWA then publishes combined state and federal responsible structures for each state in June of the same year.

4 DELIVERY OF THE MAINTENANCE AND CONSTRUCTION PROGRAMS

4.1 Maintenance (Bridge Crews & Contracts)

4.1.1 State Force Bridge Crews

Each of VDOT's districts has two or more maintenance crews whose primary function is to maintain state-owned structures. They are supplemented by hired equipment operators to assist in their work. The type of work they perform varies from preventive maintenance to complete replacement of smaller structures. The types of activities performed are indicated in Table 4-1:

Table 4-1- Activities Performed by VDOT's Bridge Crews

Type of Work	Typical Activities performed
Preventive Maintenance	Deck sweeping, deck washing, beam end washing, sealing cracks, thin overlays, joint rehabilitation, large culvert cleaning, and vegetation removal
Restorative Maintenance	Overlays, rail repair, deck patching, superstructure repairs, substructure repairs, bearing repairs, painting, large culvert repairs
Rehabilitation	Deck and superstructure replacement, major repairs to substructures and large culverts
Replacement	Complete bridge and large culvert replacement
Other	Special purchases of equipment or materials

Bridge crews are able to rapidly and effectively respond to the needs of the bridge inventory, with particular focus on the secondary system. Table 4-2 indicates the number of crews and crew members in each district. Accomplishments by bridge crews are reported in Table 4-3.

Table 4-2- VDOT's Bridge Maintenance Crews

District	VDOT State Force Bridge Crews				
District	No. Crews	No. Crew Members			
Bristol	6	30			
Salem	6	35			
Lynchburg	4	30			
Richmond	4	30			
Hampton Roads	4	29			
Fredericksburg	2	16			
Culpeper	3	23			
Staunton	5	36			
NOVA	3	21			
Statewide	37	250			

Table 4-3- FY2018 Accomplishments of VDOT's Bridge Maintenance Crews, and Number of Structures Preserved, Rehabilitated, or Replaced

	Preservation		Dobobi	Rehabilitation		Domlocomont		State Feres	
District	Preventative	Restorative	Renabilitation		Replacement		State Force		
	No.	No.	No.	No. SD	No.	No. SD	No.	No. SD	
1 Bristol	1,097	220	25	9	13	13	1,355	22	
2 Salem	867	248	23	4	5	4	1,143	8	
3 Lynchburg	214	36	12	12	10	10	272	22	
4 Richmond	316	43	4	4	4	4	367	8	
5 H. Roads	124	56	99	37	37	37	316	74	
6 F'burg	57	25	2	2	8	7	92	9	
7 Culpeper	NA	NA	NA	NA	NA	NA	NA	NA	
8 Staunton	380	20	15	12	8	6	423	18	
9 NOVA	418	15	4	4	2	2	435	6	
Statewide	3,473	663	184	84	87	83	4,403	167	

^{* &}quot;No. SD" is number of Poor (SD) structures

4.1.2 Contracts

In addition to using state-force bridge crews, VDOT partners with private industry to deliver its bridge maintenance program. There are several types of contracts that VDOT's districts employ to accomplish bridge maintenance work:

- Task-order consultant contracts for design of bridge rehabilitation projects: VDOT
 has a group of qualified professional engineering consultants who are called upon to
 provide design, construction support, and engineering expertise as required
- On-call maintenance contracts: VDOT uses indefinite-quantity contracts with specific
 unit prices to perform bridge maintenance, repair, and preservation work through task
 orders. These contracts may be general in nature, encompassing a wide variety of work,
 or they may be more specific, targeting narrower areas of contractor expertise such as
 painting or traffic control. On-call contracts are usually district-based or regional.
- **Hired equipment contracts:** Many VDOT bridge offices use hired equipment contracts to provide equipment and operators on an as-needed basis. These contracts are often limited to one or two counties within a particular district.
- Material purchase contracts: VDOT has several statewide contracts for materials such as lug bolts and precast concrete slabs. These contracts tend to provide better pricing by increasing the quantity. They also provide districts with ready access to materials without individual procurements, thus reducing administrative burden.

4.2 INSPECTION, LOAD RATING AND PERMITTING

4.2.1 Bridge and Ancillary Structure Inspection

Bridge and Culvert Inspection: VDOT uses its comprehensive inspection program to evaluate and monitor the conditions of its structures. The data collected during inspections is used as the primary source of information for determining maintenance, repair and replacement needs. NBI structures and non-NBI bridges receive detailed inspections at regular intervals not exceeding 24 months. Non-NBI large culverts are inspected at intervals not exceeding 48 months. Table 4-4 provides minimum inspection frequencies.

Inspectors use condition ratings to describe each existing structure. As detailed previously, these condition ratings are based on FHWA criteria. The condition assessments of the structures are performed by qualified inspectors, and all assessments are performed in accordance with the NBIS as well as VDOT's policies and procedures. VDOT's inspection procedures and requirements are detailed in VDOT's current Instructional and Informational Memorandum IIM-S&B-27.

Structure Type	Frequency of Inspections				
Structure Type	NBIS	VDOT*			
Bridges	2 Years	2 Year or 1 Year (SD or Posted)			
Culverts	2 Years	2 Year (NBI) or 4 Year (Non-NBI)			
Fracture Critical Structures	2 Years	1 Year			
Fatigue Prone Detail	2 Years	1 or 2 Years			
Underwater	5 Years	5 Years			
Sign Structures	No Requirement	2 - 6 Years			
Signal Structures	No Requirement	4 Years			
Highmast Light Poles	No Requirement	2 - 4 Years			
Camera Poles	No Requirement	4 Years			
Luminaires	No Requirement	4 Years			

Table 4-4- Inspection Frequencies

Ancillary Structure Inspection: VDOT utilizes a new, commercial inventory and inspection software system (HMMS) to maintain data for its ancillary structures. HMMS became available in December 2017, and the entry of all of the collected data for ancillary structures is underway. Because the HMMS is not yet fully functioning with current data, this report relies on the most recent data entry (October 6, 2017) in the previous ancillary structures database(s).

Inspections of the ancillary structures are usually performed on a four-year cycle, but the required inspection interval varies depending on the purpose, condition, and type of the structure. At the time of each inspection, an inspector assigns condition ratings to describe each of the major structural components of each structure. These condition ratings are based on criteria similar to those defined by FHWA for bridge inspection. The condition assessments of the structures are performed by qualified inspectors, and assessments are performed in accordance with VDOT's policies and procedures.

VDOT's ancillary structure inspection procedures and requirements are detailed in VDOT's current Instructional and Informational Memoranda IIM-S&B-82 and IIM-S&B-90, and VDOT's "Traffic Ancillary Structures Inventory and Inspection Manual."

Inspection Program Delivery and Costs: The structure safety inspection program provides the data for most of Virginia's maintenance and bridge management decisions. In FY2018, VDOT inspected 9,943 bridges and culverts at an expense of \$29.1 million, utilizing in-house inspection staff and consultant contracts. Also, VDOT inspected 4,919 ancillary structures at an expense of \$5.9 million.

VDOT also uses consultants to perform inspections on ancillary structures. There are a total of 21 consultant contracts: 18 for bridge and large culvert inspection; one statewide underwater inspection contract; and two contracts for load rating. Table 4-4 shows VDOT's inspection

^{*} District structure and bridge engineers may choose to inspect structures more frequently based on the conditions found during the inspections. Bridge and culvert inspection frequencies are mandated, but ancillary structure inspection frequencies may be extended if necessary.

practices for inspection frequency compared to the NBIS. Table 4-5 shows the number of bridge, large culvert and ancillary structure inspections conducted by each district.

NBI bridges owned by other Virginia entities (localities, toll authorities, etc.) must follow the minimum requirements for bridge safety inspection established by the NBIS.

In addition to GCRs, VDOT inspectors collect and record detailed structural element data, which are used in the operation of its Bridge Management System (BMS). The BMS information is used to determine current and future maintenance and preservation needs of the structures.

The inspection reports list repair recommendations for each structure. At the time of inspection, the inspectors utilize their experience and judgment to determine the immediacy of the need for maintenance and to prioritize the recommended repairs accordingly. Many of VDOT's inspectors have completed FHWA's NHI training course "Inspection and Maintenance of Ancillary Highway Structures" and draw on this training when performing inspections.

Inspection Program Quality Control and Quality Assurance (QC/QA): The accuracy, thoroughness, and completeness of the bridge safety inspections are essential. The inspections are used to evaluate each structure's safety and to make decisions on planning, budgeting, and performance of maintenance, repair, rehabilitation, and replacement of VDOT's structures. Since 1991, it has been the policy of VDOT's Structure and Bridge Division to provide rigorous quality control and quality assurance (QC/QA) of the structure safety inspection program. In January 2005, the NBIS portion of the Code of Federal Regulations was amended to require each state to "Assure systematic quality control and quality assurance procedures are used to maintain a high degree of accuracy and consistency in the inspection program. The QA program includes periodic field review of inspection teams, periodic bridge inspection refresher training for program managers and team leaders, and independent review of inspection reports and computations." The Structure and Bridge Division meets these NBIS requirements with its quality control and quality assurance programs.

Table 4-5- Number of Inspections Performed on VDOT-Owned Structures in FY 2018

District	Br	idges	Large	Culverts	And	cillary	Total No.
2.0	No.	Percentage	No.	Percentage	No.	Percentage	Structures
1 Bristol	1,338	19%	321	12%	95	2%	1,754
2 Salem	1,171	16%	253	9%	213	4%	1,637
3 Lynchburg	618	9%	360	13%	14	0%	992
4 Richmond	926	13%	365	13%	165	3%	1,456
5 Hampton Roads	658	9%	230	8%	1,763	36%	2,651
6 Fredericksburg	221	3%	188	7%	109	2%	518
7 Culpeper	571	8%	246	9%	-	0%	817
8 Staunton	1,103	15%	382	14%	14	0%	1,499
9 NOVA	617	9%	375	14%	2,546	52%	3,538
Total	7,223	100%	2,720	100%	4,919	100%	14,862

In 2008, VDOT's Structure and Bridge Division developed Information and Instruction Memorandum (IIM) IIM-S&B-78, describing the bridge safety inspection Quality Control(QC)/Quality Assurance(QA) program, which requires the following:

In accordance with the NBIS, program managers and team leaders must successfully complete an FHWA approved comprehensive bridge inspection training course. Within VDOT, all bridge safety inspection personnel will successfully complete the National Highway Institute (NHI) course 'Safety Inspection of In-Service Bridges' (FHWA-NHI-130055) within the first five years of employment in bridge inspection. VDOT's Structure and Bridge Division also requires inspection personnel successfully complete the NHI course 'Bridge Inspection Refresher Training' every five years. Underwater inspectors are required to fulfill the training requirements as set forth in the NBIS and the VDOT 'Dive Safety Manual'.

VDOT's central office and district offices have a responsibility to review and validate inspection reports and inventory data. Discrepancies found during the field and office reviews performed by district and central office personnel are documented in a written report and shared with all parties involved. The central office conducted its annual QA review on seven of the nine district bridge inspection programs during FY2018. A review of load ratings for a sample of bridges was a key component of the QA reviews. In addition, underwater inspection QA/QC field reviews are scheduled by the Central Office Underwater Inspection Coordinator. Underwater inspection QA/QC was performed on two structures during this time period.

FHWA conducted its annual NBIS compliance review from August 9, 2017 to October 17, 2017, with a draft report provided on December 11, 2017. VDOT had 45 days to address any deficiencies that were identified. The compliance review consisted of a review of the statewide inventory/database/organization/procedures for structure (bridge and large culvert) safety inspections and a QA review of a sample of structure records and structure field reviews of each of the nine districts. The National Bridge Inspection Program Final Summary of Metrics PY2017 review found that VDOT complied with all 23 NBIS metrics. VDOT is establishing a QA/QC program for ancillary structures and tunnels similar to the one currently in place for bridge and large culvert inspections.

In August 2015, FHWA issued the National Tunnel Inspection Standards (NTIS), after which VDOT's Structure and Bridge Division created a tunnel inspection program to implement the NTIS in Virginia. Policies and procedures for tunnel inspection, including specific inspection manuals for each tunnel, are being developed. Tunnel inspections were performed for five tunnels in FY2018. Two consultant contracts for tunnel engineering have been used to perform tunnel inspections for VDOT maintained tunnels.

4.2.2 Load Rating

Structures are designed and constructed to support theoretical design loads. The design procedures are governed by national standards issued by the American Association of State Highway and Transportation Officials (AASHTO) and other state-specific guidelines.

Once a bridge is constructed and put in service, load rating analyses are performed when significant changes in the condition of the structure are noted during inspections. The findings

from the inspection are used to update the bridge model to establish the bridge's current capacity. This is completed for AASHTO standard design loads, legal loads, and other standard loads that assist in administrating the permitting program. All of VDOT's in-service structures are load rated using nationally adopted AASHTO standards, in compliance with the National Bridge Inspection Program and the 23 metrics used to evaluate the program. Each bridge is assigned a safe capacity for the anticipated configurations of trucks that will use the structure.

4.2.3 Permitting

VDOT provides engineering services to the Virginia Department of Motor Vehicles (DMV) on the issuance of "superload" hauling permits (for very heavy vehicles). In reviewing the superload permit applications, VDOT staff convert the vehicle's axle configuration, load, and spacing to an equivalent operating rating (EOR) for the AASHTO standard design vehicle. This EOR can be compared to the operating load rating of the structure. The operating rating for the design vehicle is defined as the maximum infrequent load that a structure can sustain between scheduled inspections.

Certain haulers are issued "blanket superload permits", and such blanket permits are provided with a list of structures they cannot cross, corresponding to the EOR of their vehicle. The provided lists vary from an EOR of 36 tons (approximately 200 restricted structures) to an EOR of 49 tons (approximately 1600 restricted structures). These lists are updated on a quarterly basis to account for any change in the bridge inventory and current condition of the bridges. The 49-ton weight limit corresponds to the maximum safe operating load rating of what is known as the "AASHTO standard vehicle".

Any vehicle with an EOR exceeding 49 tons is denied a superload blanket permit and must apply for a superload single trip permit, which is route-specific. Each route-specific permit requires a more in-depth review of the specific structures the vehicle will cross. The route-specific superload application is a more rigorous process than the blanket superload. When the EOR of the vehicle exceeds the operating rating of a specific structure for a superload single trip permit, the vehicle is given a restriction or denied passage over it.

4.3 Construction

Virginia's highway construction program is divided into major component programs known as "SMART SCALE" and "State of Good Repair". Both programs emphasize transparency and use formulas based on objective data for project selections. At the most general level, SMART SCALE projects are intended to improve congestion, safety, accessibility, land use, economic development, and the environment, while State of Good Repair (SGR) projects are limited to the repair, restoration or replacement of deficient bridges and pavements. The SGR program is now the most significant source of construction funds for Poor (SD) structures in Virginia.

The Commonwealth Transportation Board approved the SGR prioritization and fund distribution processes on May 16, 2018, with the resolution shown in the link below:

http://www.ctb.virginia.gov/resources/2018/may/reso/Resolution_4_sgr.pdf

There are currently 178 bridges in the SGR program. The lists of SGR bridges in Virginia's Six-Year Improvement Program (SYIP) are provided in Table E-1 and Table E-2 in Appendix E.

4.4 TECHNOLOGY AND INNOVATION (TECHNIQUES & MATERIALS)

Virginia has been widely recognized as a leader in the development and successful implementation of new technologies, techniques and materials for use in new and existing bridges. This history of innovation has been used to make our bridges more durable, safer, and less expensive to build. There are many elements contributing to this success, but the most prominent are the two factors indicated below:

- The Virginia Transportation Research Council (VTRC): This organization
 works with VDOT's Structure and Bridge Division, the Materials Division and the
 nine districts to solve problems in the most practical manner. The results are
 evident in all facets of VDOT's bridge program.
- Collaboration: VDOT, Virginia's localities, and many of the state's universities
 work together to perform targeted, solution-driven research. There are nine
 "Research Advisory Committees" that hold semi-annual meetings, bringing
 together the users and developers of technology to help keep the research focused
 and progressing. This cooperation keeps Virginia on the cutting edge of bridge
 technology.

Virginia's culture of innovation has resulted in significant improvements to its bridge program, as can be seen from the list below, which highlights some of the most notable advances to date:

- Corrosion resistant reinforcement in 2009*
- Jointless bridge technology for new bridges in 2011*
- Continuous spans for new bridges starting in the 1970s
- High Performance Concrete in all bridge elements in 2003*
- Three coat zinc-based paint in 1982 *
- Self-consolidating concrete for drilled shafts in 2013*
- Latex modified concrete deck overlays (milling only) starting in the 1970s
- Epoxy deck overlays starting in the 1970s
- Low-shrinkage, low-cracking, concrete in decks in 2015
- Latex modified concrete overlays (the addition of hydrodemolition to milling) in 2015
- Carbon fiber prestressing strands in prestressed concrete piles in 2017
- Stainless steel prestressing strands in concrete piles in 2017
- Virginia abutment used with finger joints in 2012*
- Virginia pier used with finger joints in 2014*
- Engineered cementitious composites (ECC) for shear keys in 2016*
- Engineered cementitious composites (ECC) for culvert liners in 2018
- Self-consolidating concrete for substructure surface repairs in 2016
- Flexible Concrete Plug Joints in 2017

^{*} The Year of full implementation

In the near future, the Structure and Bridge Division will be placing greater emphasis on the following materials and actions to further improve the durability of its structures:

- Corrosion-resistant structural steel (ASTM A709, Grade 50CR)
- Virginia adjacent member connections for prestressed concrete voided slabs and box beams
- Virginia High Performance Concrete (VHPC)
- Hydrodemolition for patches and refacing of substructures
- Increased use of joint elimination when repairing and rehabilitating bridges
- Use of materials for large culverts that have shown good past performance
- Lightweight concrete
- Partial Depth Link Slabs

A large portion of the inventory was constructed using older technology and materials and is approaching the last years of anticipated service life. This period can be extended through planned preventative maintenance, restorative maintenance, rehabilitation, and the strategic use of better materials. Continued innovation and technological advancement help Virginia to meet this challenge.

APPENDIX A – ADDITIONAL INVENTORY INFORMATION

Additional inventory information on Virginia Responsible Structures:

- Table A-1 through Table A-8 and Figure A-1 through Figure A-4 provide counts and average ages of the number of bridges and large culverts
- Table A-3 and Table A-4 provide the number of NBI structures
- Table A-5 and Table A-6 provide the number of Non-NBI structures
- Table A-7 and Table A-8 provide the number of NBI structures on the NHS
- Figure A-1 through Figure A-4 show the average age of structures by system and district

The following are brief definitions of some of the common terms used in describing the structures in this report.

- **Bridge**: Any structure with a clear span opening over an obstacle that is not defined as a culvert. Bridges typically have deck, superstructure, and substructure components, although some bridge structures integrate the deck and superstructure components as in the case of slab/box beams, T-beams, and rigid frames.
- Culvert: Any structure that has an integral floor system that supports the sidewalls and
 provides a lined channel typically buried concrete or metal pipes or box shapes. For a
 culvert, there is no distinction between substructure and superstructure and typically there
 is no deck. Multiple box or pipe culverts are considered a single structure whenever the
 clear distance between openings is less than half of the smaller adjacent opening.
 Otherwise, each opening is considered a separate structure.
- NBI: Abbreviation for "National Bridge Inventory." When a structure is referred to as an
 NBI structure it meets the federal definition of a bridge as defined in the NBIS. Generally,
 NBI structures are bridges with spans greater than 20 feet and culverts that are greater
 than 20 feet (when measured along the roadway).
- Non-NBI: A bridge or culvert in the inventory of VDOT's Structure and Bridge Division that
 does not meet the NBI definition above. Structures in this category include large culverts
 and bridges equal or less than 20 feet and structures. All non-NBI culverts have a
 hydraulic opening equal to or greater than 36 square feet.
- Large Culvert: A culvert that either meets the definition of a Non-NBI structure or a culvert that meets the definition of an NBI structure as defined in the NBIS.

Table A-1- Total Number of Bridges by District

District		Nι	ımber of Bridg	es	
District	Interstate	Primary	Secondary	Urban	Total
1 Bristol	135	552	1,553	191	2,431
2 Salem	112	490	1,344	75	2,021
3 Lynchburg	0	367	798	42	1,207
4 Richmond	281	491	681	99	1,552
5 Hampton Roads	338	352	308	225	1,223
6 Fredericksburg	23	143	223	6	395
7 Culpeper	71	260	677	12	1,020
8 Staunton	206	506	1,360	66	2,138
9 NOVA	267	348	557	16	1,188
Statewide	1,433	3,509	7,501	732	13,175

Table A-2- Total Number of Large Culverts by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	80	406	468	17	971		
2 Salem	98	332	588	27	1,045		
3 Lynchburg	0	292	556	18	866		
4 Richmond	239	292	457	61	1,049		
5 Hampton Roads	121	115	194	81	511		
6 Fredericksburg	57	111	260	1	429		
7 Culpeper	50	235	386	11	682		
8 Staunton	225	322	763	46	1,356		
9 NOVA	121	210	711	28	1,070		
Statewide	991	2,315	4,383	290	7,979		

Table A-3- Total Number of NBI Bridges by District

District	Number of Bridges						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	135	424	986	188	1,733		
2 Salem	112	373	901	73	1,459		
3 Lynchburg	0	331	675	42	1,048		
4 Richmond	278	460	619	97	1,454		
5 Hampton Roads	338	344	283	224	1,189		
6 Fredericksburg	23	135	200	6	364		
7 Culpeper	71	172	519	11	773		
8 Staunton	206	373	810	65	1,454		
9 NOVA	267	309	455	16	1,047		
Statewide	1,430	2,921	5,448	722	10,521		

Table A-4- Total Number of NBI Large Culverts by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	28	101	130	17	276		
2 Salem	27	83	240	22	372		
3 Lynchburg	0	83	218	18	319		
4 Richmond	85	118	244	61	508		
5 Hampton Roads	40	39	90	77	246		
6 Fredericksburg	22	42	113	1	178		
7 Culpeper	14	72	176	7	269		
8 Staunton	49	84	240	42	415		
9 NOVA	28	98	348	27	501		
Statewide	293	720	1,799	272	3,084		

Table A-5- Total Number of Non-NBI Bridges by District

District	Number of Bridges						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	0	128	567	3	698		
2 Salem	0	117	443	2	562		
3 Lynchburg	0	36	123	0	159		
4 Richmond	3	31	62	2	98		
5 Hampton Roads	0	8	25	1	34		
6 Fredericksburg	0	8	23	0	31		
7 Culpeper	0	88	158	1	247		
8 Staunton	0	133	550	1	684		
9 NOVA	0	39	102	0	141		
Statewide	3	588	2,053	10	2,654		

Table A-6- Total Number of Non-NBI Large Culverts by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	52	305	338	0	695		
2 Salem	71	249	348	5	673		
3 Lynchburg	0	209	338	0	547		
4 Richmond	154	174	213	0	541		
5 Hampton Roads	81	76	104	4	265		
6 Fredericksburg	35	69	147	0	251		
7 Culpeper	36	163	210	4	413		
8 Staunton	176	238	523	4	941		
9 NOVA	93	112	363	1	569		
Statewide	698	1,595	2,584	18	4,895		

Table A-7- Total Number of NBI Bridges on NHS by District

District	Number of Bridges						
DISTRICT	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	134	136	0	1	271		
2 Salem	112	196	2	2	312		
3 Lynchburg	0	173	1	0	174		
4 Richmond	270	284	14	7	575		
5 Hampton Roads	332	207	3	69	611		
6 Fredericksburg	23	85	3	2	113		
7 Culpeper	70	57	1	1	129		
8 Staunton	203	132	0	1	336		
9 NOVA	261	259	30	0	550		
Statewide	1,405	1,529	54	83	3,071		

Table A-8- Total Number of NBI Large Culverts on NHS by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary	Urban	Total		
1 Bristol	28	38	0	0	66		
2 Salem	25	36	0	0	61		
3 Lynchburg	0	44	1	0	45		
4 Richmond	80	77	2	2	161		
5 Hampton Roads	37	25	0	6	68		
6 Fredericksburg	22	27	1	0	50		
7 Culpeper	13	38	1	1	53		
8 Staunton	45	23	0	1	69		
9 NOVA	28	70	3	0	101		
Statewide	278	378	8	10	674		

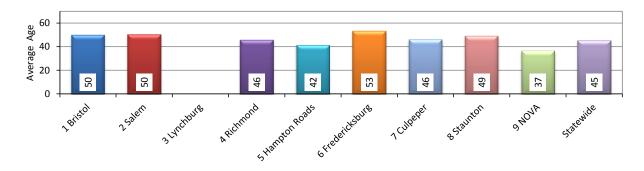


Figure A-1- Average Age of Interstate Structures by District

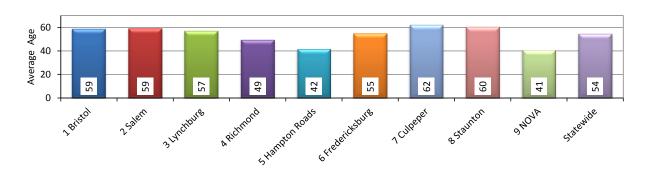


Figure A-2- Average Age of Primary Structures by District

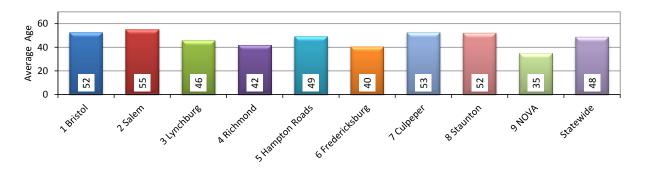


Figure A-3 - Average Age of Secondary Structures by District

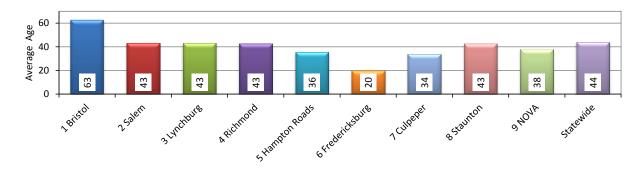


Figure A-4 - Average Age of Urban Structures by District

APPENDIX B – ADDITIONAL INVENTORY INFORMATION ON ANCILLARY STRUCTURES

Table B-1 through Table B-4 provide information for the subcategories of each type of ancillary structure. Typical examples of each type of ancillary structure are also shown below.

Table B-1- Number of Sign Structures by District

		Structure Type					
District	Cantilever	Overhead	Parapet Mount	Butterfly	Other	Total	of Total Inventory
1 Bristol	22	37	1	10		70	1.9%
2 Salem	93	87	-	93	1	274	7.3%
3 Lynchburg	7	60	-	5		72	1.9%
4 Richmond	383	326	125	1	-	835	22.3%
5 Hampton Roads	390	409	99	54	-	952	25.5%
6 Fredericksburg	67	32	-	1	-	100	2.7%
7 Culpeper	9	21	10	5	-	45	1.2%
8 Staunton	22	39	11	22	-	94	2.5%
9 Northern Virginia	631	579	18	68	-	1,296	34.7%
Total	1,624	1,590	264	259	1	3,738	100.0%

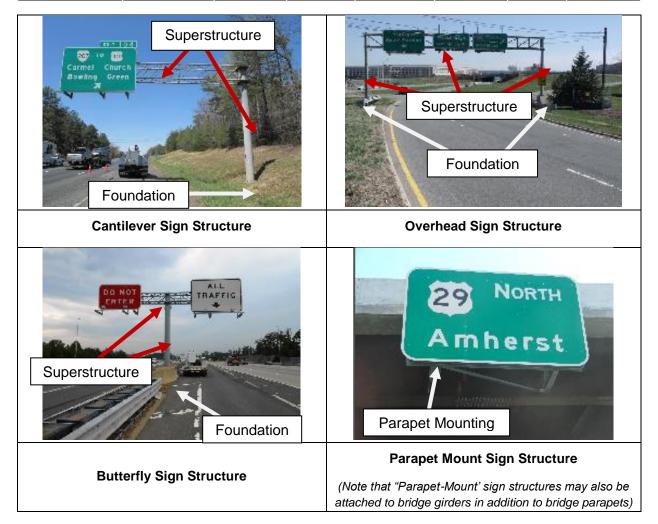
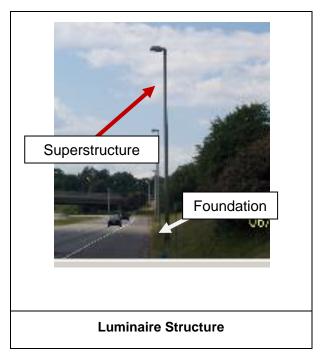



Table B-2- Number of Luminaire Structures by District

	Structure Type	Percentage	
District	Luminaire	of Total Inventory	
1 Bristol	467	2.3%	
2 Salem	821	4.1%	
3 Lynchburg	302	1.5%	
4 Richmond	2,221	11.1%	
5 Hampton Roads	6,846	34.1%	
6 Fredericksburg	642	3.2%	
7 Culpeper	158	0.8%	
8 Staunton	282	1.4%	
9 Northern Virginia	8,312	41.5%	
Total	20,051	100.0%	

Table B-3- Number of Traffic Signal Structures by District

District		Percentage			
District	Mast Arm	Span	Span Wire	Total	of Total
1 Bristol	231	-	16	247	2.6%
2 Salem	522	-	21	543	5.7%
3 Lynchburg	309	-	10	319	3.4%
4 Richmond	1,269	_	278	1,547	16.3%
5 Hampton Roads	467	_	55	522	5.5%
6 Fredericksburg	751	1	8	760	8.0%
7 Culpeper	359	-	8	367	3.9%
8 Staunton	540	-	49	589	6.2%
9 Northern Virginia	3,767	2	809	4,578	48.3%
Total	8,215	3	1,254	9,472	100.0%

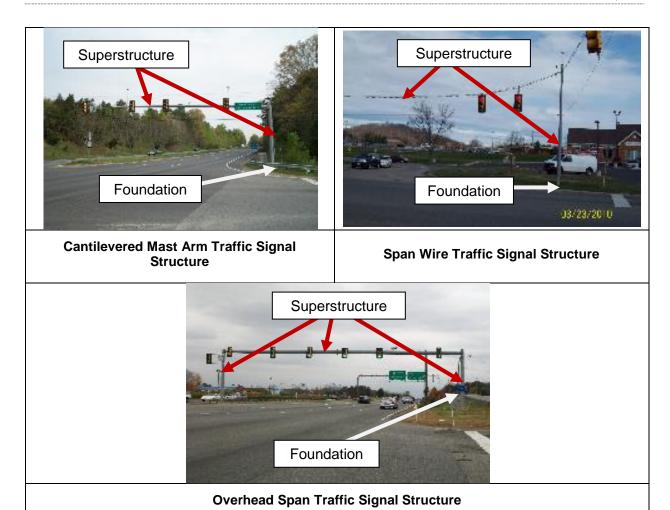
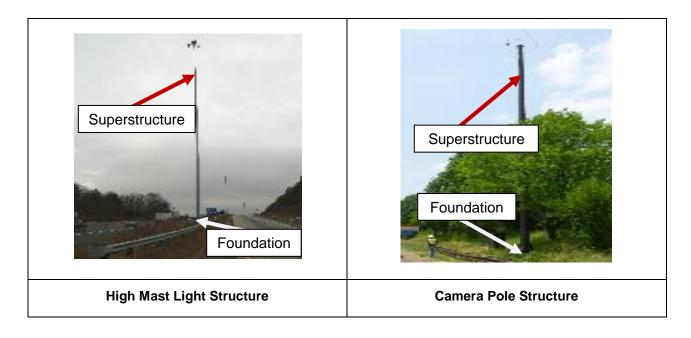



Table B-4- Number of High Mast Light and Camera Pole Structures by District

	Str	ucture Type		Percentage
District	High Mast Light	Camera Poles	Total	of Total Inventory
1 Bristol	76	1	77	5.2%
2 Salem	13	3	16	1.1%
3 Lynchburg	-	-	-	0.0%
4 Richmond	105	54	159	10.8%
5 Hampton Roads	145	256	401	27.3%
6 Fredericksburg	1	59	60	4.1%
7 Culpeper	ı	10	10	0.7%
8 Staunton	21	66	87	5.9%
9 Northern Virginia	331	328	659	44.9%
Total	692	777	1,469	100.0%

APPENDIX C – ADDITIONAL INVENTORY AND CONDITION INFORMATION FOR STRUCTURES

In Table C-1 the Bridge Min GCR is the minimum GCR for the three major components that define a bridge (deck, superstructure, and substructure). The Min GCR is based on all four of the major components and thus includes the large culvert component.

Table C-1- Number of Structure Components in Each General Condition Rating by System

Highway	Component		•		G	CR			•	Avg. GCR
System	Component	9	8	7	6	5	4	3	0 - 2	Avg. GCR
	Deck	0	41	511	651	216	14	0	0	6.24
Interstate	Superstructure	4	91	372	543	404	19	0	0	6.09
	Substructure	0	45	316	628	436	8	0	0	5.97
	Bridge Min GCR	0	29	208	561	607	28	0	0	5.72
	Large Culvert	1	10	240	599	140	1	0	0	6.12
	Min GCR	1	39	448	1,160	747	29	0	0	5.89
	Deck	29	154	1,304	1,243	701	67	3	0	6.24
	Superstructure	37	336	1,092	1,107	806	125	5	1	6.23
Primary	Substructure	26	141	1,210	1,349	723	60	0	0	6.21
i iiiiai y	Bridge Min GCR	18	77	815	1,295	1,128	169	6	1	5.87
	Large Culvert	2	71	697	1,187	343	15	0	0	6.20
	Min GCR	20	148	1,512	2,482	1,471	184	6	1	6.00
	Deck	197	1,196	3,095	1,916	964	104	1	1	6.66
	Superstructure	190	1,423	2,367	1,724	1,444	338	11	1	6.48
Secondary	Substructure	45	585	2,678	2,690	1,356	141	1	3	6.31
occondary	Bridge Min GCR	42	369	2,030	2,482	2,140	423	12	3	5.98
	Large Culvert	86	554	1,698	1,361	579	99	5	1	6.52
	Min GCR	128	923	3,728	3,843	2,719	522	17	4	6.18
	Deck	14	50	297	233	107	24	2	1	6.38
	Superstructure	20	71	270	186	132	48	3	2	6.31
Urban	Substructure	18	53	273	236	125	25	2	0	6.34
Orban	Bridge Min GCR	13	24	218	219	183	68	5	2	5.95
	Large Culvert	0	24	133	96	31	6	0	0	6.48
	Min GCR	13	48	351	315	214	74	5	2	6.10
	Deck*	240	1,441	5,207	4,043	1,988	209	6	2	6.49
	Superstructure*	251	1,921	4,101	3,560	2,786	530	19	4	6.36
All	Substructure*	89	824	4,477	4,903	2,640	234	3	3	6.25
All	Bridge Min GCR	73	499	3,271	4,557	4,058	688	23	6	5.92
	Large Culvert	89	659	2,768	3,243	1,093	121	5	1	6.38
	Min GCR	162	1,158	6,039	7,800	5,151	809	28	7	6.09

^{*} A small number of bridges have particular configurations so that they don't have all the major components. Accordingly, there is a small difference in the total number of deck, superstructure, and substructure components.

Trend lines showing the average general condition ratings of rated components are provided in Figure C-1 through Figure C-4. For Figure C-1 the "Br Min" only includes the minimum condition ratings of bridges while the "Str Min" includes the minimum condition ratings for both bridges and large culvert components.

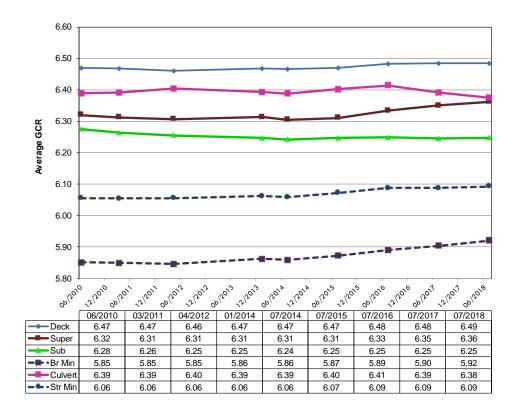


Figure C-1- Trends in Average General Condition Ratings by Component – Statewide

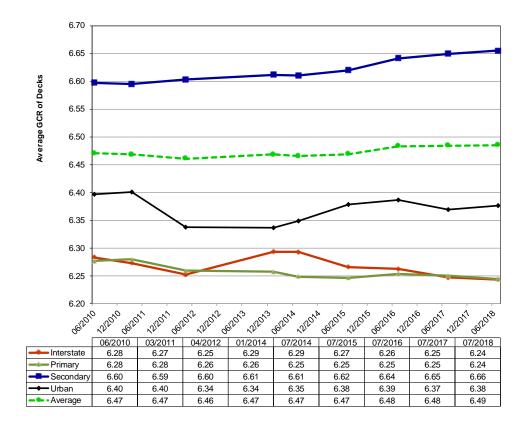


Figure C-2- Bridge Decks: Trends in Average General Condition Ratings by Highway System

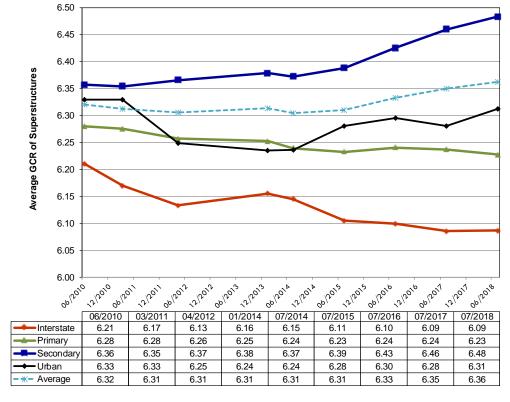


Figure C-3- Superstructures: Trends in Average General Condition Ratings by Highway System

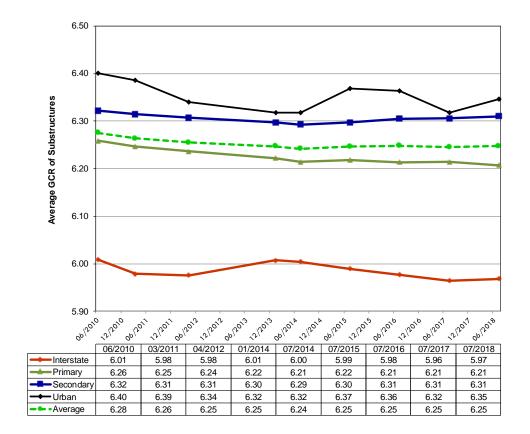


Figure C-4- Substructures: Trends in Average General Condition Ratings by Highway System

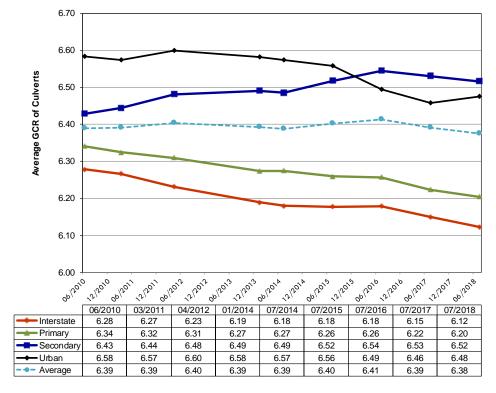


Figure C-5- Culverts: Trends in Average General Condition Ratings by Highway System

APPENDIX D – GENERAL CONDITION RATINGS (BRIDGES AND LARGE CULVERTS)

General Condition Ratings (GCRs): In accordance with the requirements of the National Bridge Inventory (NBI), General Condition Ratings are assigned by the structure inspection team after each bridge inspection. These ratings are included in each inspection report to describe the current physical state of the bridge or large culvert. Evaluation is based on the physical condition of the structure at the time of inspection. Separate GCR values are assigned to the deck, superstructure, and substructure components of a bridge. A large culvert receives a single GCR. The GCRs are assigned based on a numerical grading system that ranges from 0 (failed condition) to 9 (excellent condition). The table below describes the general condition ratings. The figures in the following pages provide illustrative examples of these ratings.

0	1	2	3	4	5	6	7	8	9
Failed	Imminent Failure	Critical	Serious	Poor	Fair	Satisfactory	Good	Very Good	Excellent
POOR (SD)				FAIR		GOO	D		

A structure is defined as Poor (SD) if one or more of its major components (deck, superstructure, substructure, or large culvert) has a General Condition Rating (GCR) less than or equal to four (4).

Code Description

- N **NOT APPLICABLE**
- 9 **EXCELLENT CONDITION**
- 8 **VERY GOOD CONDITION**: No problems noted.
- 7 GOOD CONDITION: Some minor problems.
- 6 **SATISFACTORY CONDITION**: Structural components show some minor deterioration.
- 5 **FAIR CONDITION**: All primary structural elements are sound but may have some minor section loss, cracking, spalling or scour
- 4 **POOR CONDITION**: Advanced section loss, deterioration, spalling or scour.
- 3 **SERIOUS CONDITION**: Loss of section, deterioration, spalling or scour have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.
- 2 CRITICAL CONDITION: Advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed substructure support. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.
- "IMMINENT" FAILURE CONDITION: Major deterioration or section loss present in critical structural components or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to traffic but corrective action may put back in light service.
- 0 **FAILED CONDITION**: Out of service beyond corrective action.

Typical Examples of General Condition Ratings for Deck							
GCR	Example						
4 or less – Poor Condition							
	Bridge Deck with advanced deterioration						
5 – Fair Condition (At risk of becoming Poor condition)	Bridge Deck with cracking and some patching						
6 – Satisfactory Condition	Bridge Deck with minor to no deterioration						

Typical Examples of General Condition Ratings for Superstructure									
GCR	Example Concrete								
OOK	Steel	Concrete							
4 or less - Poor Condition									
	Bridge Superstructure with advanced section loss	Concrete Beam with major spalling (bottom of beam viewed from below)							
5 – Fair Condition (At risk of becoming Poor condition)	Bridge Superstructure with minor to moderate section loss	Spall on end of beam with exposed reinforcing with minor section loss							
6 – Satisfactory Condition	Rust scale and minor section loss	Concrete Beam with localized spalling							

Typical Examples of General Condition Ratings for Substructure							
GCR	Example						
4 or less – Poor Condition	Bridge Substructure with advanced deterioration						
	Bridge Substructure with advanced deterioration						
5 – Fair Condition (At risk of becoming Poor condition)	Bridge Substructure with moderate cracks and deterioration						
6 – Satisfactory Condition	Bridge Substructure with minor cracks						

Typical Examples of General Condition Ratings for Large Culverts									
GCR	E)	xample							
GCK	Steel	Concrete							
4 or less - Poor Condition	Culvert with advanced section loss	Portion of center wall of box culvert missing							
5 – Fair Condition (At risk of becoming Poor condition)	Culvert panels separated	02/12/2008 Culvert moderate deterioration							
6 – Satisfactory Condition	Light rust along flow line	Culvert with minor cracks							

APPENDIX E – STATE OF GOOD REPAIR BRIDGES IN VIRGINIA'S APPROVED SYIP

The Virginia General Assembly authorized the State of Good Repair (SGR) program during the 2015 session, which was later incorporated into the Code of Virginia that authorizes the Commonwealth Transportation Board to use funds for reconstruction and replacement of Poor (SD) state and locally owned bridges. The SGR program is intended to fund bridge work that provides long-term solutions exceeding routine maintenance, but should not be viewed solely as a bridge replacement program. In general, project scopes are established to rehabilitate, reconstruct, or replace deficient elements in the most practical and cost-effective manner and also include measures to mitigate future deterioration.

Table E-1 and Table E-2 provide lists of all the bridges currently in the SGR program as of June 20, 2018. SYIP refers to the Commonwealth's official Six Year Improvement Program.

Table E-1- SGR Bridges in Virginia's Approved SYIP: VDOT- Owned Bridges

Route	Featured Intersection	Virginia System	District	SGR To	tal Allocation	Total Project Allocations	
58	Peggy Branch	Primary	Bristol	\$	3,405,953	\$	5,161,642
893	Little Toms Crk	Secondary	Bristol	\$	608,000	\$	608,000
23	NSRR	Primary	Bristol	\$	1,700,000	\$	1,900,000
81	Reed Creek in Wythe Co	Interstate	Bristol	\$	11,750,000	\$	11,750,000
81	Reed Creek in Wythe Co	Interstate	Bristol	\$	11,750,000	\$	11,750,000
664	Rte 63	Secondary	Bristol	\$	1,300,000	\$	1,300,000
81	Rte 686 (Mulberry Lane)	Interstate	Bristol	\$	7,100,000	\$	7,450,000
81	Rte 686 (Mulberry Lane)	Interstate	Bristol	\$	7,100,000	\$	7,450,000
19	NSRR & Wrights Valley Creek	Primary	Bristol	\$	2,800,000	\$	2,800,000
682	Copper Creek	Secondary	Bristol	\$	1,255,510	\$	1,255,510
658	S Fork Holston River	Secondary	Bristol	\$	1,016,115	\$	1,180,000
703	Little Reed Island Creek	Secondary	Salem	\$	1,117,528	\$	2,089,063
668	NS Railway	Secondary	Salem	\$	750,353	\$	4,819,174
634	Roanoke River	Secondary	Salem	\$	7,144,759	\$	12,987,953
81	Route 8	Interstate	Salem	\$	22,137,195	\$	24,490,216
81	Route 8	Interstate	Salem	\$	8,631,005	\$	9,524,185
43	Big Otter River	Primary	Salem	\$	2,813,466	\$	4,143,930
813	Roanoke River @ Kumis	Secondary	Salem	\$	4,944,758	\$	4,952,596
666	NS Railway	Secondary	Salem	\$	3,864,445	\$	3,873,419
711	NS Railway	Secondary	Lynchburg	\$	3,481,327	\$	4,082,181
761	Straightstone Creek	Secondary	Lynchburg	\$	1,474,157	\$	2,082,704
778	Buffalo River	Secondary	Lynchburg	\$	1,916,533	\$	2,623,363
681	Williams Run	Secondary	Lynchburg	\$	1,882,965	\$	2,182,965
29	Staunton River & NS Railway	Primary	Lynchburg	\$	13,078,673	\$	28,672,136
621	MEHERRIN RIVER	Secondary	Richmond	\$	1,463,112	\$	2,142,410
625	CHICKAHOMINY RIVER	Secondary	Richmond	\$	2,251,726	\$	3,192,817

Route	Featured Intersection	Virginia System	District	SGRT	otal Allocation		Total Project Allocations
195	RTE 76, CSX, RAMP S	Interstate	Richmond	\$	17,637,679	\$	18,800,180
708	Namozine Creek	Secondary	Richmond	\$	2,241,763	\$	3,035,763
703	ROWANTY CREEK	Secondary	Richmond	\$	1,889,917	\$	3,078,314
630	WAQUA CREEK	Secondary	Richmond	\$	1,544,886	\$	1,894,886
604	TOMAHAWK CREEK	Secondary	Richmond	\$	2,102,047	\$	3,153,599
360	NS RAILWAY & RTE 360 BUS	Primary	Richmond	\$	4,384,600	\$	4,384,600
92	BUTCHERS CREEK	Primary	Richmond	\$	3,020,000	\$	3,845,000
173	I-64 & CSX RR	Primary	Hampton Roads	\$	1,240,020	\$	32,872,000
635	N&W RAILWAY	Secondary	Hampton Roads	\$	3,023,629	\$	4,483,200
189	BLACKWATER RIVER	Primary	Hampton Roads	\$	23,732,391	\$	25,077,498
1306	WEST RIDGE CK @TANGIER	Secondary	Hampton Roads	\$	1,867,059	\$	2,720,739
1304	WEST RIDGE CK @TANGIER	Secondary	Hampton Roads	\$	1,525,805	\$	2,922,882
35	Tarrara Creek	Primary	Hampton Roads	\$	2,434,031	\$	3,189,882
603	Blackwater River	Secondary	Hampton Roads	\$	2,576,164	\$	2,576,164
308	Three Creek	Secondary	Hampton Roads	\$	3,428,502	\$	3,872,413
658	NORTH ANNA RIVER	Secondary	Fredericksburg	\$	2,101,556	\$	2,834,580
662	FOX CREEK	Secondary	Fredericksburg	\$	1,759,785	\$	2,469,785
606	ROUTE I-95	Secondary	Fredericksburg	\$	4,424,138	\$	11,915,178
3	RAPPAHANNOCK RIVER @	Primary	Fredericksburg	\$	19,000,000	\$	20,000,000
620	PISCATAWAY CREEK	Secondary	Fredericksburg	\$	1,600,000	\$	1,600,000
14	PORPOTANK CREEK	Primary	Fredericksburg	\$	2,250,000	\$	3,452,000
216	NORTHWEST BR SARAH CREEK	Secondary	Fredericksburg	\$	500,000	\$	550,000
360	MONCUIN CREEK	Primary	Fredericksburg	\$	500,000	\$	550,000
360	RAPPAHANNOCK R RTE-1013@	Primary	Fredericksburg	\$	500,000	\$	550,000
17	DRAGON RUN	Primary	Fredericksburg	\$	6,200,000	\$	6,200,000
207	MATTAPONI RIVER	Primary	Fredericksburg	\$	9,060,970	\$	9,060,970
632	HARRISONS CREEK	Secondary	Fredericksburg	\$	1,950,000	\$	1,950,000
1	CHOPAWAMSIC CREEK	Primary	Fredericksburg	\$	5,750,000	\$	7,750,000
795	HARDWARE RIVER	Secondary	Culpeper	\$	1,100,000	\$	1,100,000
717	SOUTH FORK HARDWARE RVR	Secondary	Culpeper	\$	1,000,000	\$	1,140,000
701	Little River	Secondary	Culpeper	\$	2,215,000	\$	2,215,000
667	PINEY CREEK	Secondary	Culpeper	\$	1,723,500	\$	1,723,500
726	TOTIER CREEK	Secondary	Culpeper	\$	3,020,000	\$	3,020,000
641	MARSH RUN	Secondary	Culpeper	\$	700,000	\$	1,100,000
240	LICKINGHOLE CREEK	Primary	Culpeper	\$	1,900,000	\$	1,900,000
708	NORTH FORK HARDWARE RVR	Secondary	Culpeper	\$	5,100,000	\$	5,100,000
682	PLEASANT RUN	Secondary	Staunton	\$	3,546,210	\$	5,447,424
723	Opequon Creek	Secondary	Staunton	\$	1,325,731	\$	1,888,605
703	EDISON CREEK	Secondary	Staunton	\$	1,981,095	\$	2,700,000
11	I-81	Primary	Staunton	\$	8,782,394	\$	16,382,997
720	I-81	Secondary	Staunton	\$	2,245,388	\$	10,220,470
687	CASCADES CREEK	Secondary	Staunton	\$	1,152,510	\$	2,531,763
			•	+		_	

Route	Featured Intersection	Virginia System	District	SGR Total Allocation	Total Project Allocations
250	Bell Creek	Primary	Staunton	\$ 3,295,695	\$ 4,317,279
33	NSRR	Primary	Staunton	\$ 8,111,903	\$ 8,352,943
673	Catoctin Creek	Secondary	NoVa	\$ 4,500,000	\$ 5,280,000
236	I-395	Primary	NoVa	\$ 11,844,889	\$ 11,844,889
674	Colvin Run	Secondary	NoVa	\$ 2,273,488	\$ 3,273,488
66	RMPS B & F	Interstate	NoVa	\$ 6,000,000	\$ 6,700,000
77	COVE CREEK	Interstate	Bristol	\$ 7,900,001	\$ 8,400,001
81	Rt 11, NSRR, M.F. Holston River	Interstate	Bristol	\$ 12,499,999	\$ 12,499,999
8	Mayo River	Primary	Salem	\$ 3,756,340	\$ 5,156,340
58	Crooked Creek	Primary	Salem	\$ 3,943,914	\$ 5,486,092
715	NS Railway	Secondary	Salem	\$ 2,376,197	\$ 3,085,019
220	Reed Creek	Primary	Salem	\$ 5,885,000	\$ 7,285,000
760	ROANOKE RIVER	Secondary	Salem	\$ 2,280,939	\$ 3,080,939
11	N&W RAILWAY	Primary	Salem	\$ 2,625,000	\$ 2,625,000
40	Tharp Creek	Primary	Salem	\$ 1,240,199	\$ 1,240,199
622	Flat Creek	Secondary	Lynchburg	\$ 736,867	\$ 11,029,052
29	NS Railway	Primary	Lynchburg	\$ 6,842,565	\$ 6,842,565
92	Staunton River	Primary	Lynchburg	\$ 11,904,228	\$ 11,904,228
621	Appomattox River	Secondary	Lynchburg	\$ 3,194,285	\$ 4,527,443
360	NS RAILWAY & RTE 360BUS	Primary	Richmond	\$ 6,165,986	\$ 6,165,986
703	CSX TRANSP RIGHT OF WAY	Secondary	Richmond	\$ 2,500,000	\$ 2,850,000
46	U.S. 58 BYPASS	Primary	Richmond	\$ 1,850,000	\$ 1,850,000
30	NORTH ANNA RIVER	Primary	Richmond	\$ 3,000,000	\$ 3,300,000
156	RTE 360	Primary	Richmond	\$ 2,000,000	\$ 2,200,000
7667	ROUTE 0064	Secondary	Richmond	\$ 4,000,000	\$ 4,300,000
157	I-64 & RAMPS GASKIN RD	Primary	Richmond	\$ 4,000,000	\$ 4,300,000
64	ROUTE I-95	Interstate	Richmond	\$ 6,111,770	\$ 6,111,770
657	RTE195	Secondary	Richmond	\$ 5,000,000	\$ 5,000,000
460	U.S. 460 (BYPASS)	Primary	Richmond	\$ 4,500,000	\$ 4,500,000
641	CSX TRNS & USDGSC SERVIC	Secondary	Richmond	\$ 3,500,000	\$ 3,500,000
0	ROUTE I-95 (I-64)	Urban	Richmond	\$ 8,436,957	\$ 8,436,957
95	RTE 608 (REYMET RD)	Interstate	Richmond	\$ 11,000,000	\$ 12,050,000
64	ROUTE 95	Interstate	Richmond	\$ 4,050,000	\$ 4,050,000
671	Nottoway River	Secondary	Hampton Roads	\$ 7,000,000	\$ 7,000,000
10	Cypress Ck	Primary	Hampton Roads	\$ 1,600,000	\$ 2,500,000
692	Champion Swamp	Secondary	Hampton Roads	\$ 1,250,000	\$ 1,950,000
40	Otterdam Swamp	Primary	Hampton Roads	\$ 1,715,151	\$ 2,815,151
95	Rte. 17	Primary	Fredericksburg	\$ 6,666,815	\$ 6,666,815
95	Rte. 17	Primary	Fredericksburg	\$ 6,666,815	\$ 6,666,815
617	EXOL SWAMP	Secondary	Fredericksburg	\$ 2,500,000	\$ 2,500,000
3	NORTH END BRANCH	Primary	Fredericksburg	\$ 2,558,165	\$ 3,058,165
647	South Anna River	Secondary	Culpeper	\$ 1,200,000	\$ 2,050,000
601	ROUTE 29 & 250 BYPASS	Secondary	Culpeper	\$ 1,858,026	\$ 2,858,026

Route	Featured Intersection	Virginia System	District SGR Total		SGR Total Allocation		Total Project Allocations
647	East Branch Thumb Run	Secondary	Culpeper	\$	1,970,000	\$	2,800,000
33	NSRR	Primary	Staunton	\$	8,352,943	\$	8,352,943
33	I-81	Primary	Staunton	\$	11,278,670	\$	12,900,164
395	I-395	Urban	NoVa	\$	2,690,332	\$	12,194,800
28	BULL RUN	Primary	NoVa	\$	5,000,000	\$	5,000,000
613	ARLINGTON BOULEVARD	Secondary	NoVa	\$	2,500,000	\$	2,500,000
7	SUGARLAND RUN	Primary	NoVa	\$	9,200,000	\$	11,225,000
123	LEESBURG PIKE (RTE. 7)	Primary	NoVa	\$	1,250,000	\$	1,250,000
123	LEESBURG PIKE, ROUTE 7	Primary	NoVa	\$	1,250,000	\$	1,250,000
627	QUANTICO CREEK	Secondary	NoVa	\$	1,300,000	\$	1,800,000
711	BRANCH OF CATOCTIN CREEK	Secondary	NoVa	\$	1,500,000	\$	1,500,000
120	PIMMITT RUN	Primary	NoVa	\$	7,000,000	\$	8,000,000

Table E-2- SGR Bridges in Virginia's Approved SYIP: Locality - Owned Bridges

Route No.	Featured Intersection	Virginia System	District	SGR	Total Allocation	Total Project Allocations
0	S.F. Powell River	Urban	Bristol	\$	676,508	\$ 2,130,916
16	CAVITTS CREEK	Primary	Bristol	\$	1,300,000	\$ 1,300,000
61	N FORK CLINCH RIVER	Primary	Bristol	\$	1,500,000	\$ 1,500,000
16	CLINCH RIVER	Primary	Bristol	\$	357,810	\$ 357,810
19	S FORK CLINCH RIVER	Primary	Bristol	\$	1,100,000	\$ 1,100,000
0	BENGES BRANCH	Urban	Bristol	\$	316,000	\$ 316,000
3050	Booth Branch	Urban	Bristol	\$	290,000	\$ 290,000
3137	Slate Creek	Urban	Bristol	\$	180,000	\$ 180,000
2164	Knox Creek	Urban	Bristol	\$	92,500	\$ 92,500
4263	Stream	Urban	Bristol	\$	290,000	\$ 290,000
1030	Stream	Urban	Bristol	\$	180,000	\$ 180,000
5417	Granny Creek	Urban	Bristol	\$	180,000	\$ 180,000
2080	Left Fork	Urban	Bristol	\$	60,000	\$ 60,000
2435	Dan Branch	Urban	Bristol	\$	180,000	\$ 180,000
5105	Levisa Fork	Urban	Bristol	\$	575,000	\$ 575,000
2078	Knox Creek	Urban	Bristol	\$	170,000	\$ 170,000
4062	War Fork	Urban	Bristol	\$	85,000	\$ 85,000
2163	Knox Creek	Urban	Bristol	\$	85,000	\$ 85,000
0	BEAVER CREEK	Urban	Bristol	\$	286,000	\$ 286,000
460	CLINCH RIVER	Primary	Bristol	\$	2,158,556	\$ 2,158,556
4245	Russell Fork	Urban	Bristol	\$	265,000	\$ 265,000
11	APPERSN DR O ROANOKE RV	Primary	Salem	\$	972,694	\$ 3,325,000
11	COLORADO ST O NS RWY	Primary	Salem	\$	6,450,000	\$ 6,450,000
0	Ivy Creek	Urban	Lynchburg	\$	2,000,000	\$ 3,377,392
0	Poplar Creek	Urban	Lynchburg	\$	154,681	\$ 600,000
360	JAMES RIVER SOUTH DIV	Primary	Richmond	\$	1,050,000	\$ 4,300,000
360	JAMES RIVER NORTH DIV	Primary	Richmond	\$	700,000	\$ 3,950,000
0	CSX RAILWAY	Urban	Richmond	\$	1,774,000	\$ 1,774,000
36	APPOMATTOX RIVER CANAL	Primary	Richmond	\$	2,025,000	\$ 2,025,000
105	N.N. Resevoir	Primary	Hampton Roads	\$	5,100,000	\$ 15,900,000
0	CHESAPEAKE& ALBEMARLE CAN	Urban	Hampton Roads	\$	4,036,475	\$ 8,871,745
688	Kilby Creek Spillway	Urban	Hampton Roads	\$	778,000	\$ 2,128,000
13	RTE. 460 & NS RAILWAY	Primary	Hampton Roads	\$	5,110,040	\$ 5,110,040
460	RTE 166 & U # 1808	Primary	Hampton Roads	\$	2,215,700	\$ 2,672,200
32	CYPRESS SWAMP	Urban	Hampton Roads	\$	1,988,889	\$ 2,705,971
337	Beamons Mill Pond	Urban	Hampton Roads	\$	880,183	\$ 1,121,252
337	Jerico Canal	Urban	Hampton Roads	\$	479,633	\$ 620,900
616	Jones Swamp	Urban	Hampton Roads	\$	1,397,829.00	\$ 1,815,362.00
660	Somerton Creek	Urban	Hampton Roads	\$	1,981,084.00	\$ 2,589,652.00
608	Cohoon Creek	Urban	Hampton Roads	\$	470,400.00	\$ 769,920.00
639	SBD SYS RR & NS RAILWAY	Urban	Hampton Roads	\$	2,838,000.00	\$ 3,440,000.00
674	WASHINGTON DITCH	Urban	Hampton Roads	\$	414,104.00	\$ 762,771.00

Route	Featured Intersection	Virginia System	District	SGR Total Allocation		Total Project Allocations	
661	Chapel Swamp	Urban	Hampton Roads	\$	408,459.00	\$	724,275.00
13	NS RAILWAY	Primary	Hampton Roads	\$	2,912,000.00	\$	3,187,000.00
3	RAPPAHANNOCK RIVER	Primary	Fredericksburg	\$	2,200,000	\$	2,207,639
0	NORFOLK SOUTHERN RAILWAY	Urban	Culpeper	\$	2,440,626	\$	2,440,626
250	RUGBY AVE	Primary	Culpeper	\$	2,488,292	\$	2,488,292
250	RTE 29 BUSINESS	Primary	Culpeper	\$	3,847,554	\$	3,847,554
250	NORFOLK SOUTHERN RAILWAY	Primary	Culpeper	\$	1,303,496	\$	1,303,496
211	HAWKSBILL CK	Primary	Staunton	\$	1,953,030	\$	5,796,485
0	BLACKS RUN	Urban	Staunton	\$	499,100	\$	2,003,100
0	CSX RAILROAD	Urban	Staunton	\$	300,000	\$	1,814,360
1411	N FORK SHENANDOAH RIVER	Secondary	Staunton	\$	676,491	\$	676,491
0	4 mile run	Secondary	NOVA	\$	750,553	\$	1,833,998