

State of the Structures and Bridges Fiscal Year 2022

July 1, 2021 – June 30, 2022

Prepared By: Structure and Bridge Division, Virginia Department of Transportation

Comments and or questions may be directed to:

Gregory Henion, P.E., CCM, State Structure and Bridge Engineer

Virginia Department of Transportation — 1401 East Broad Street, Richmond, VA 23219

Telephone: 804-786-2847 Email: gregory.henion@vdot.virginia.gov

TABLE OF CONTENTS

1 0	verview	1
1.1	Introduction	1
1.2	Performance	3
1.3	Inventory Addressed in Report	6
2 In	ventory	8
2.1	Structures	8
2.2	Inventory Changes from Previous Years	9
2.3	Age of Structures	10
2.4	Categories of Structures	12
2.5	Ancillary Structures	18
3 C	ondition	20
3.1	Condition Categories (Good, Fair, and Poor Structures)	20
3.2	Performance Goals	20
3.3	Current Conditions - Structures	29
3.4	Current Conditions - Ancillary Structures	39
3.5	Condition Trends – General	40
4 D	elivery of the Maintenance, Inspection, and Construction Programs	44
4.1	Maintenance (Bridge Crews & Contracts)	44
4.2	Inspection, Load Rating and Permitting	46
4.3	Construction	51
4.4	Technology and Innovation (Techniques & Materials)	51
Appen	dix A – Additional Inventory Information	54
Appen	dix B – Additional Inventory Information on Ancillary Structures	59
Appen	dix C – Additional Inventory and Condition Information for Structures	63
Appen	dix D – General Condition Ratings (Bridges and Large Culverts)	64
Appen	dix E – State of Good Repair Structures in Virginia's Approved Six Year Improv	vement Plan

LIST OF FIGURES

Figure 1-1- Distribution of Structures by Highway System	2
Figure 1-2- Multi-Year Trend of Structures in Good or Fair Condition by Count and Deck Area	
Figure 1-3- Multi-Year Trend of Structures in Good, Fair, and Poor Condition	5
Figure 1-4- Distribution of Structures by Owner	7
Figure 2-1- Cumulative Age Distribution of Structures by Decade	10
Figure 2-2- Average Age of Structures by District	
Figure 2-3- Count of Structures Built by Decade and Condition Percentage by Count	11
Figure 2-4- Count and Condition Data for Most Common Structure Categories (All Structures)	13
Figure 2-5- Count and Condition Data for Less Common Structure Categories (All Structures)	13
Figure 2-6- Count and Condition Data for Most Common Structure Categories (NBI Structures)	14
Figure 2-7- Count and Condition Data for Less Common Structures Categories (NBI Structures)	14
Figure 2-8- Count and Condition Data for Most Common Structure Categories (Non-NBI Structures)	15
Figure 2-9- Count and Condition Data for Less Common Structure Categories (Non-NBI Structures)	15
Figure 2-10- Distribution of Ancillary Structures by District	18
Figure 2-11- Distribution of Ancillary Structures by Type	19
Figure 3-1- Multi-Year Trend of Average GCR Weighted by Importance Factor by Highway System	
Figure 3-2- Average GCR Weighted by Importance Factor by District	
Figure 3-3- Multi-Year Trend of Percentage of Structures in Good or Fair Condition Statewide	23
Figure 3-4- Annual Transitions between Good/Fair/Poor from End of FY 2021 to End of FY 2022	
Figure 3-5- Multi-Year Performance History of Percentage of Deck Area of Poor NBI Structures on the	
NHS	
Figure 3-6- Percentage of Deck Area of Poor NBI Structures on the NHS by District	
Figure 3-7- Multi-Year Performance History of Percentage of Deck Area of NBI Structures on the NHS	
Good Condition	
Figure 3-8- Percentage of Deck Area of NBI Structures on the NHS in Good Condition by District	
Figure 3-9- Percentage and Count of Poor Structures by District – All Systems	
Figure 3-10- Percentage and Count of Poor NBI Structures on the NHS by District	
Figure 3-11- Percentage and Count of Poor Structures on Interstate System by District	
Figure 3-12- Percentage and Count of Poor Structures on Primary System by District	
Figure 3-13- Percentage and Count of Poor Structures on Secondary and Urban Systems by District	
Figure 3-14- Deck Area of NBI Structures on NHS by District	
Figure 3-15- Deck Area of Poor NBI Structures on NHS by District	
Figure 3-16- Total Deck Area of All Structures by District	
Figure 3-17- Deck Area of Poor Structures by District	
Figure 3-18- Deck Area of Weight-Posted Structures by District.	
Figure 3-19- Number of Weight-Posted Structures by District	
Figure 3-20- Percentage and Count of Ancillary Structures by Condition Category and Structure Type	
Figure 3-21- Multi-Year Performance History of Percentage of Poor Structures on All Systems	
Figure 3-22- Multi-Year Performance History of Percentage of Poor Structures for Interstate System	41
Figure 3-23- Multi-Year Performance History of Percentage of Poor Structures for Primary System by	40
Year	
Figure 3-24- Multi-Year Performance History of Percentage of Poor Structures for Secondary and Urba	
Systems.	
Figure 3-25- Multi-Year Comparison of Virginia's NBI Poor Structures to the National Average	
Figure A-1- Average Age of Interstate Structures by District	
Figure A-2- Average Age of Primary Structures by District	58 58
Floure A-5 - Average Age of Secondary and Urban Structures by DISTICT	ಎಗ

LIST OF TABLES

Table 1-1- Percentage of Structures by Count in Good or Fair Condition	3
Table 1-2- Conditions of Ancillary Structures	
Table 2-1- Number of Structures	8
Table 2-2- Deck Area of Structures	9
Table 2-3- Number of Weight-Posted Structures by Decade Built and Condition Category	12
Table 2-4 VDOT's Special Structures	17
Table 3-1- Condition Categories for Structures	20
Table 3-2- Virginia's Targets for Percentage of Structures by Count in Good or Fair Condition	23
Table 3-3- Virginia's Status with FHWA's Required Performance Targets	26
Table 3-4- Percentage of Deck Area of Poor NBI Structures on the NHS by District and Highway Syste	
Table 3-5- Deck Area of NBI Structures on NHS by District and Highway System	
Table 3-6- Deck Area of Poor NBI Structures on NHS by District and Highway System	
Table 3-7- Deck Area of All Structures by District and Highway System	
Table 3-8- Deck Area of Poor Structures by District and Highway System	
Table 3-9- Percentage of Poor Condition Deck Area by District and Highway System	
Table 3-10- Deck Area of Weight-Posted Structures by District and Highway System	
Table 3-11- Number of Weight-Posted Structures by District and Highway System	
Table 3-12- Percentage and Count of Ancillary Structures by Condition Category and Structure Type	
Table 3-13- Change in Number of Poor Structures	
Table 3-14- Number of Structures Improved from or Deteriorated into Poor Condition	
Table 4-1- Activities Performed by VDOT's Bridge Crews	
Table 4-2- VDOT's Bridge Maintenance Crews	44
Table 4-3- FY2022 Accomplishments of VDOT's Bridge Maintenance Crews, and Number of Structure	es
Preserved, Rehabilitated, or Replaced	45
Table 4-4- Inspection Frequencies	46
Table 4-5- Number of Inspections Performed on VDOT-Owned Structures in FY2022	48
Table A-1- Total Number of Bridges by District	55
Table A-2- Total Number of Large Culverts by District	55
Table A-3- Total Number of NBI Bridges by District	
Table A-4- Total Number of NBI Large Culverts by District	
Table A-5- Total Number of Non-NBI Bridges by District	
Table A-6- Total Number of Non-NBI Large Culverts by District	
Table A-7- Total Number of NBI Bridges on NHS by District	
Table A-8- Total Number of NBI Large Culverts on NHS by District	
Table B-1- Number of Sign Structures by District	
Table B-2- Number of Luminaire Structures by District	
Table B-3- Number of Traffic Signal Structures by District	
Table B-4- Number of High Mast Light and Camera Pole Structures by District	
Table C-1- Number of Structure Components in Each General Condition Rating by System	
Table E-1- SGR Structures in Virginia's Approved FY2024 to FY2029 SYIP: VDOT-Owned Structures	
Table E-2- SGR Structures in Virginia's Approved FY2024 to FY2029 SYIP: Locality-Owned Structure	s 74

1 OVERVIEW

Mission of the Structure and Bridge Division

The Structure and Bridge Division will plan, design, inspect and rehabilitate bridges and structures for a surface transportation system that represents the highest standards of safety and quality. Stewardship, accountability, professionalism, and customer service will guide every action that we take and every decision that we make.

1.1 Introduction

This annual report summarizes the conditions of Virginia's bridges, large culverts, and ancillary structures (signs, luminaires, traffic signals, high mast lights and camera poles). It also describes the bridge maintenance, construction, and inspection programs of the Virginia Department of Transportation (VDOT). The report reflects accomplishments for the 2022 Fiscal Year (referred to as FY2022), which ran from July 1, 2021 through June 30, 2022. Salient historical trends are also provided. All "current" data in this report reflect inventory and condition information as of July 1, 2022.

Data presented in this report provide information for the population of highway structures referred to as "Virginia Responsible Structures". This term refers to bridges and culverts carrying public traffic that are owned by the Virginia Department of Transportation (VDOT), localities (cities, towns and counties), other state agencies, or other legal entities of the Commonwealth of Virginia. These structures include bridges of any length and culverts with total opening in excess of 36 square feet. Temporarily closed structures are also included. Any use of the terms "structures" or "Virginia's structures" in this report refers to that population defined as "Virginia Responsible Structures" above unless specifically noted otherwise.

There are currently 21,269 structures in Virginia, and 19,662 of these are owned by VDOT. The remainder are owned by other legal entities, including localities, state agencies, and toll authorities. As shown in Figure 1-1, the majority of structures are on secondary routes. VDOT's control of secondary routes is due in large part to the Byrd Act of 1932, which transferred ownership of most county-owned secondary roads and bridges to the state. This is a departure from the practice in most states, where most secondary roads are under local jurisdiction. As a result, VDOT has the third largest number of highway structures in its state-owned inventory, behind Texas and North Carolina.

Since 2007, bridges have been designed and built using new standards and construction materials, resulting in anticipated service lives of 75 years. However, the vast majority (91.3%) of Virginia's bridges were built prior to 2007 and were designed with anticipated design service lives of 50 years. About 55% of structures are 50 years or older (11,663 of 21,269), meaning these structures have reached or exceeded their anticipated service lives.

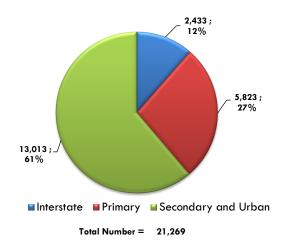


Figure 1-1- Distribution of Structures by Highway System

The aging of the bridge inventory is a national concern and the greatest challenge facing Virginia's highway structures. To provide some context for the problem, if Virginia were to replace all its 50-year service life bridges as they turned 70, the approximate total cost between now and the year 2072 (the next 50 years) would be \$90 billion in 2020 dollars. However, if current funding remains constant over the same 50-year interval, only \$19 billion will be available to address these bridges (combined maintenance and construction funds). This extraordinary gap between available funding and replacement need has caused Virginia to take a data-driven approach to the management of its structures in order to maximize the effectiveness of every available dollar.

A comprehensive study investigating the anticipated deterioration of Virginia's highway structures was performed in 2019. The study was initiated to develop the most effective long-term strategies for managing the bridge inventory, determine the best methods for measuring performance, establish acceptable levels of service, and estimate the amount of funding needed. The study found that at current levels of funding the bridge inventory would experience a slow, managed decline in condition but nonetheless sustain an acceptable level of service, but *only* if Virginia shifts its focus immediately to a preservation-first methodology. Alternatively, the study found that an additional \$122M (in 2019 dollars) annually would be needed if this change in approach were not adopted. The study's findings, provided in the *Comprehensive Review Pavements and Structures*, were presented to Virginia's Commonwealth Transportation Board (CTB) at its September 2019 meeting. The study found that in order to transition to a preservation first philosophy, two major changes are necessary:

- Virginia's primary source of construction funding for existing bridges, the State of Good Repair program, needs to expand its eligibility requirements to allow work on bridges before they become poor (formerly referred to as structurally deficient). This will require a change to Code of Virginia Section § 33.2-369.
- The primary method for measuring bridge conditions should be changed from the
 percentage of structurally deficient bridges to the average general condition rating. This
 change included in the <u>Agenda item #9 Resolution</u> was adopted at the December 2019
 CTB meeting.

Unless the relevant section of the Code of Virginia is changed, Virginia's bridge program will be underfunded by \$122M annually (2019 dollars). Until that change is made, VDOT is working within existing constraints to proactively manage the bridge inventory to optimize durability, safety, and value of funds invested by employing the following techniques:

- A bridge safety inspection program that exceeds the requirements of the Federal Highway Administration (FHWA), typically resulting in inspection intervals no greater than 2 years for bridges and large culverts, inspections of non-NBI structures, and more frequent inspection intervals for poor structures or structures with fatigue prone details
- A maintenance program that uses a balanced approach to preserving, repairing, and rehabilitating structures
- A proactive program of practical, collaborative research that allows for early implementation of new and innovative techniques and durable materials
- A decentralized organizational structure that promotes responsible decision-making at the local/district level
- Performance targets and quarterly reporting comparing results with targets

This report contains a variety of technical terms commonly used by bridge engineers, many of which are defined in Appendix A.

1.2 Performance

Statewide

99.3%

In 2012, Virginia attained its long-standing goal by improving its inventory so that more than 92% of its structures were in good or fair condition. This led to the development of more ambitious targets in 2017, along with a concerted effort to further reduce the number of poor (formerly referred to as *structurally deficient*, or "*SD*") structures. Table 1-1 shows the success of this effort, as Virginia has continued to reduce the number of poor structures in its inventory. Section 3 and Appendix D of this report provide detailed definitions of the "good", "fair", and "poor" condition designations that are assigned to bridges and large culverts.

		NBI and Non-NBI									
District	Interstate	Primary	Secondary & Urban	All Systems	All Systems						
1 Bristol	97.7%	97.7%	94.8%	95.8%	94.9%						
2 Salem	100.0%	98.3%	97.8%	98.1%	98.1%						
3 Lynchburg	N/A	97.9%	95.5%	96.3%	96.2%						
4 Richmond	98.5%	96.4%	92.5%	94.9%	94.5%						
5 Hampton Roads	99.8%	97.2%	96.3%	97.5%	97.1%						
6 Fredericksburg	100.0%	94.5%	96.8%	96.4%	96.0%						
7 Culpeper	100.0%	99.0%	95.9%	97.1%	96.7%						
8 Staunton	100.0%	96.9%	96.9%	97.2%	96.8%						
9 NOVA	99.5%	98 4%	97.5%	98 1%	98.3%						

Table 1-1- Percentage of Structures by Count in Good or Fair Condition

96.0%

96.8%

97.5%

During FY2022, Virginia reduced the number of poor structures from 699 (3.3% of structures) to 679 (3.2%). This compares favorably with bridge conditions nationally, 7.0% of the bridges in the

^{*} NBI refers to structures in the National Bridge Inventory, which are more than 20 feet in length

National Bridge Inventory (NBI) in the United States were poor as of December 2021 (the latest date for which data are available). Figure 1-2 shows the multi-year trend (increase) in number, percentage, and deck area of Virginia Responsible Structures in fair and good condition (not poor). Figure 1-3 shows that the reduction in the number of structures in poor condition led to a commensurate increase in the number and percentage of fair structures.

A poor designation does not mean that a bridge is unsafe. Rather these bridges have usually deteriorated to a state where they require significant repair, rehabilitation or, in many cases, replacement. Poor structures have one or more major components that are rated in poor condition in accordance with National Bridge Inspection Standards (NBIS). Any bridge in Virginia that is found to have unsafe condition is either closed or repaired immediately.

Effective bridge management requires continued maintenance of structures in all conditions, not only poor structures. Preventive maintenance on bridges is more cost-effective than waiting to perform the extensive repairs required after advanced deterioration has occurred. Virginia's continued progress in reducing the number of poor structures has led to the development of new performance metrics that will lead to an emphasis on system preservation in tandem with our continued focus on poor structures. Specifically, VDOT has added a goal for the average general condition rating (GCR) of its bridges. The GCR is a numerical assessment of condition, assigned by inspectors at each safety inspection on a 0 to 9 scale, where 0 represents failure and 9 is excellent. A GCR is assigned to each of a bridge's major components (deck, superstructure, or substructure) and a single culvert GCR rating is assigned to a large culvert in accordance with NBIS requirements.

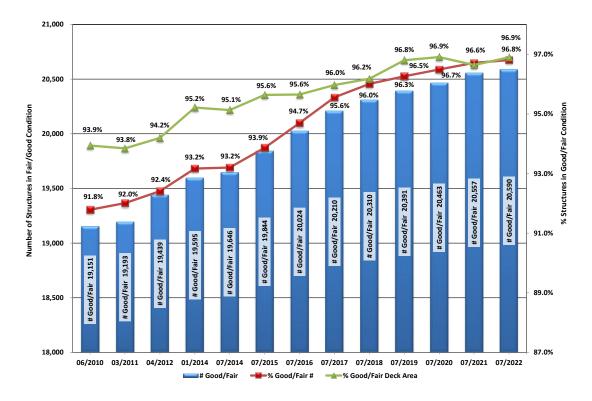


Figure 1-2- Multi-Year Trend of Structures in Good or Fair Condition by Count and Deck Area

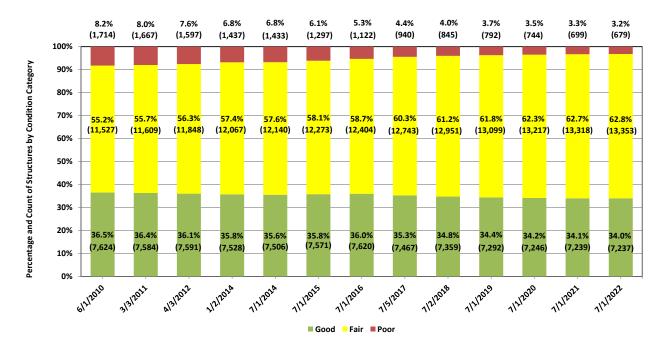


Figure 1-3- Multi-Year Trend of Structures in Good, Fair, and Poor Condition

VDOT is also responsible for the inventory, maintenance and inspection of five types of ancillary structures: signs, luminaires, signals, high mast lights, and camera poles. Their conditions are summarized in Table 1-2 for the 34,046 ancillary structures in the inventory. All information for ancillary structures is based on condition and inventory data at the end of FY2022. Ancillary structure data provided is only for structures that are owned by VDOT, as VDOT has very limited information on such structures that it does not own.

Percentage of Primary Components in Good or Fair Condition Structure Type Parapet | Superstructure **Foundation** 68.5% 70.1% 77.5% Signs Luminaires 77.7% N/A 86.1% N/A Signals 74.5% 75.5% High Mast Lights and Camera Poles 81.1% N/A 98.2%

Table 1-2- Conditions of Ancillary Structures

1.3 INVENTORY ADDRESSED IN REPORT

Data presented in this report provide condition and inventory information for all highway structures meeting the criteria for the population of structures referred to as "Virginia Responsible Structures" as defined in Section 1.1, which excludes permanently closed structures and structure types that are not relevant to reports on the condition of highway bridges, such as pedestrian bridges, scales, and ferry docks. Structures that are outside the control of the Commonwealth of Virginia, such as bridges and large culverts owned by federal agencies or legal entities directly managed by a federal agency, are also excluded.

Figure 1-4 displays the distribution of Virginia's structures by owner.

- VDOT: owned by VDOT
- Local: owned by counties, cities, and towns
- Other: owned by various legal entities, which includes state toll authorities (the Chesapeake Bay Bridge and Tunnel District), other state agencies such as the Department of Game and Inland Fisheries and State Parks, and other toll authorities (Richmond Metropolitan Authority, Dulles Greenway Toll, Globalvia (Pocahontas Parkway- Route 895)), and any border bridges for which Virginia has no responsibility

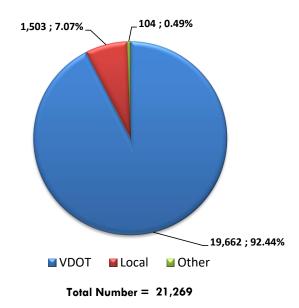


Figure 1-4- Distribution of Structures by Owner

"Virginia Responsible Structures" include the following structures carrying public vehicular traffic:

- All NBI structures for which Virginia must report condition data to FHWA. These include bridges and large culverts greater than 20 feet in length
- Non-NBI structures. These include bridges less than or equal to 20 feet in length and large culverts less than 20 feet in length with openings in excess of 36 square feet

While the maintenance of structures is generally the responsibility of their owners, FHWA holds VDOT responsible for the inspection of all NBI bridges that are not controlled by the Federal Government, regardless of ownership. VDOT chooses to also inspect and maintain its non-NBI structures (less than or equal to 20') through its Structure and Bridge Division.

2 INVENTORY

2.1 STRUCTURES

Structures can be grouped into several categories. Tables in this section provide an overview of their number, type, size, and category. Some terms and abbreviations used in the tables are defined below:

- NBI Structures in the National Bridge Inventory (greater than 20')
- NHS Structures on the National Highway System
- I Structures carrying Interstate Highway System traffic
- P Structures carrying Primary Highway System traffic
- S Structures carrying Secondary Highway System traffic
- U Structures carrying Urban Highway System traffic

		Number of Structures by District, Highway System and Category											
		N	BI			NBI o	n NHS		All Structures				
District	1	Р	S&U	Total	_	Р	S&U	Total		Р	S&U	Total	
1 Bristol	163	527	1,314	2,004	163	175	2	340	215	953	2,210	3,378	
2 Salem	139	458	1,240	1,837	136	230	4	370	210	826	2,041	3,077	
3 Lynchburg	0	411	925	1,336	0	217	1	218	0	661	1,423	2,084	
4 Richmond	363	579	1,048	1,990	362	361	24	747	519	783	1,326	2,628	
5 H. Roads*	383	380	673	1,436	378	238	82	698	465	463	809	1,737	
6 Fburg*	46	177	330	553	46	111	7	164	80	254	502	836	
7 Culpeper	84	245	718	1,047	83	95	4	182	120	495	1,097	1,712	
8 Staunton	252	456	1,168	1,876	249	153	2	404	431	827	2,231	3,489	
9 NOVA*	300	411	890	1,601	296	330	33	659	393	561	1,374	2,328	
Total	1,730	3,644	8,306	13,680	1,713	1,910	159	3,782	2,433	5,823	13,013	21,269	

Table 2-1- Number of Structures

*Note: Tables in this report use the abbreviations "H.Roads" for Hampton Roads, "F'burg" for Fredericksburg, and NOVA for Northern Virginia. These abbreviations are necessary to allow a clearer presentation of data.

The "All Structures" category in Table 2-1 and Table 2-2 includes both NBI and non-NBI structures. Note that the definition of an NBI structure is different than the definition of structures on the National Highway System (NHS), so not all structures on the NHS are in the NBI, nor are all NBI structures on the NHS. Virginia also maintains a large inventory of smaller culverts that are not included in the inventory of the Structure and Bridge Division because their total opening size is less than 36 square feet. These smaller structures have separate maintenance and inspection cycles and are not addressed in this report.

		Area of Structures by District, Highway System and Category (Millions of Square Feet)												
		N	ВІ			NBI o	n NHS		All Structures					
District	_	Р	S&U	Total	I	Р	S&U	Total	J	Р	S&U	Total		
1 Bristol	1.5	3.5	2.4	7.4	1.5	1.7	0.0	3.2	1.6	3.7	2.7	8.0		
2 Salem	1.3	4.1	3.0	8.4	1.2	2.4	0.0	3.7	1.4	4.2	3.2	8.9		
3 Lynchburg	0.0	3.9	2.5	6.4	0.0	2.5	0.0	2.5	0.0	4.0	2.6	6.6		
4 Richmond	5.8	9.0	4.5	19.3	5.8	7.1	0.4	13.3	6.1	9.2	4.6	19.9		
5 H. Roads	11.0	15.2	4.2	30.5	11.0	12.6	1.6	25.1	11.1	15.3	4.3	30.7		
6 Fburg	0.5	3.0	1.2	4.6	0.5	2.0	0.1	2.6	0.5	3.0	1.2	4.7		
7 Culpeper	0.8	1.4	1.6	3.8	0.8	0.7	0.0	1.6	0.8	1.5	1.7	4.0		
8 Staunton	2.5	3.2	2.9	8.6	2.5	1.6	0.0	4.1	2.6	3.4	3.2	9.2		
9 NOVA	8.1	6.1	5.8	19.9	8.0	5.3	0.5	13.7	8.1	6.2	6.1	20.4		
Total	31.6	49.3	28.0	108.9	31.3	35.8	2.7	69.9	32.3	50.5	29.6	112.4		

Table 2-2- Deck Area of Structures

2.2 INVENTORY CHANGES FROM PREVIOUS YEARS

Some of the charts in the report provide multi-year trends for various performance metrics. Inventory numbers provided in this report for the years 2010 and 2011 may vary slightly from numbers provided in previous editions of this report. These differences are primarily due to a change in the reporting period. Reports from 2007 through 2011 were based on a calendar year (January 1 through December 31), whereas subsequent reports were based on the fiscal year (July 1 through June 30). This change was made to align the reporting period of the State of the Structures and Bridges Report with the fiscal year and with reports developed by other VDOT divisions.

Other factors causing differences between this report and previous editions of the State of the Structures and Bridges Report include:

- Buchanan County Bridges Added to Inventory: In Fiscal Year 2012 Virginia added to its inventory 144 existing structures from Buchanan County in the Bristol District. Buchanan County retains responsibility for these bridges.
- Change in Highway System Designation of Buchanan County Bridges: In Fiscal Year 2013 the system designation of the recently added bridges from Buchanan County was changed from Secondary to Urban.
- Norfolk Southern Railway Agreement: In Fiscal Year 2014, VDOT transferred
 the ownership and maintenance responsibility for 15 railroad bridges to the Norfolk
 Southern Railway (NS). The agreement also caused the transfer of ownership and
 maintenance responsibility of 31 highway bridges crossing the NS railroad from
 NS to VDOT.
- NHS: In 2015, VDOT redefined the particular routes that constitute Virginia's portion of the NHS, which resulted in the removal and/or addition of certain

structures from inclusion on the National Highway System. This re-designation effort was performed in accordance with FHWA requirements. The historic data used for the tables and charts have been updated to reflect the current NHS designation.

Areas for all Structures: Prior to 2018, areas for culverts were computed by
multiplying barrel length by the culvert width. Starting with the 2018 report, bridge
and culvert areas have been calculated using the FHWA Computation Procedure
for the Bridge Condition Measures (FHWA-HI-18-023), which uses a slightly
different methodology.

2.3 AGE OF STRUCTURES

The aging of the bridge inventory is a significant concern, because the vast majority of Virginia's structures (91.3%) were designed with an anticipated 50-year service life, and 55% of our structures are over 50 years old.

Figure 2-1, Figure 2-2, and Figure 2-3 provide data on the ages of Virginia's structures.

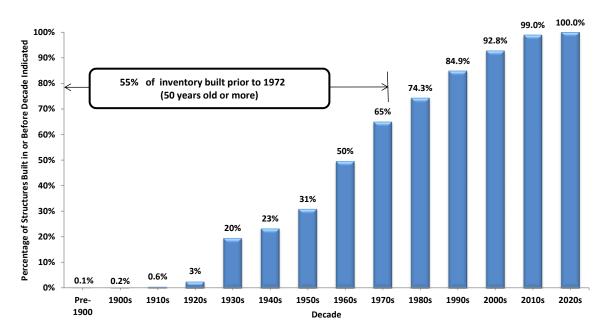


Figure 2-1- Cumulative Age Distribution of Structures by Decade

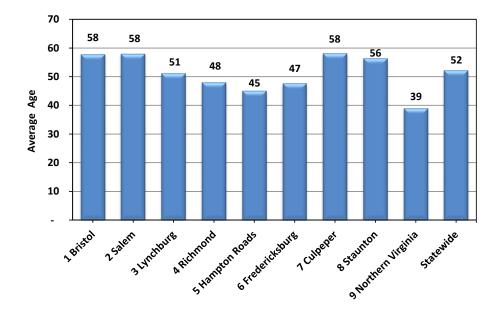


Figure 2-2- Average Age of Structures by District

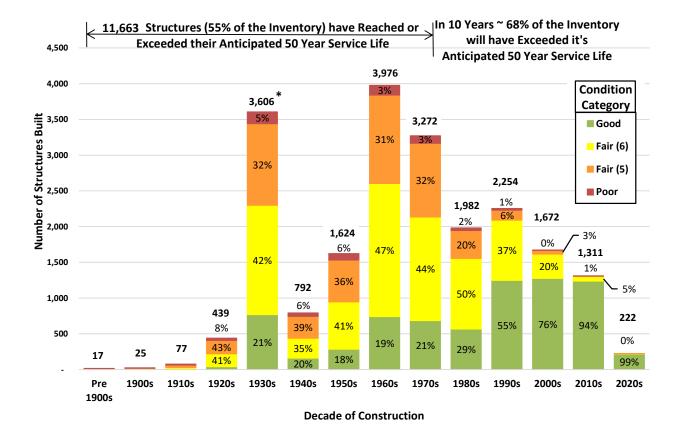


Figure 2-3- Count of Structures Built by Decade and Condition Percentage by Count

Table 2-3- Number of Weight-Posted Structures by Decade Built and Condition Category

		Decade Built													Total per Condition
Condition	Pre 1900s	1900	1910	1920	1930*	1940	1950	1960	1970	1980	1990	2000	2010	2020	Category
Good	2	-	-	2	14	6	10	16	5	3	1	4	-	-	63
Fair (6)	3	1	3	12	104	18	39	40	29	10	5	6	1	-	271
Fair (5)	1	2	14	53	261	47	119	119	66	19	8	1	ı	1	710
Poor	2	1	10	16	88	28	45	54	25	6	-	-	1	-	276
Total per Decade	8	4	27	83	467	99	213	229	125	38	14	11	2	-	1,320

^{*} A large number of county structures with unknown construction dates were added to the VDOT inventory during this period. Structures with unknown construction dates have been assumed to have year built in 1932.

2.4 CATEGORIES OF STRUCTURES

Virginia has divided the inventory into structure categories to better understand their needs and rates of deterioration. Figure 2-4 through Figure 2-9 provide inventory and condition data for 11 different categories of structures, showing the number of structures in good, fair, and poor conditions in each category. These categories describe types of materials and structural system employed. As the charts show, the performance and durability vary considerably between categories, as concrete culverts provide the greatest durability, while bridges with timber exhibit the least favorable performance.

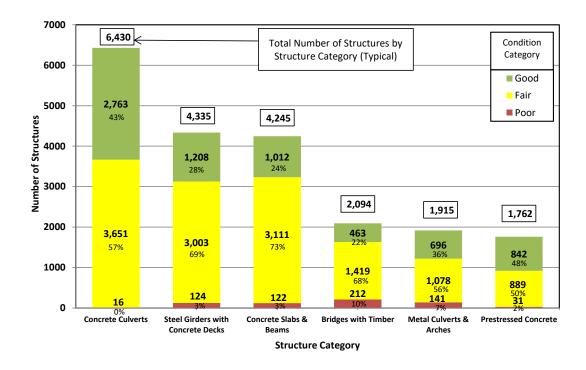


Figure 2-4- Count and Condition Data for Most Common Structure Categories (All Structures)

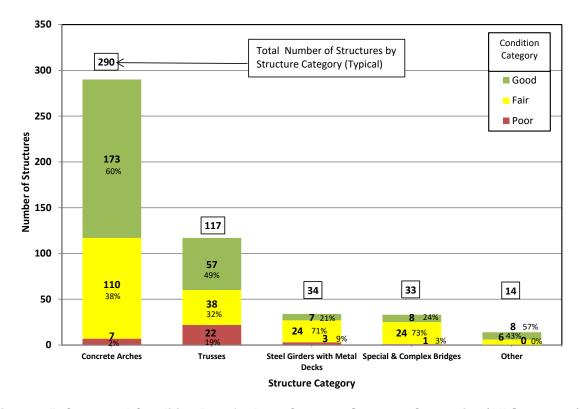


Figure 2-5- Count and Condition Data for Less Common Structure Categories (All Structures)

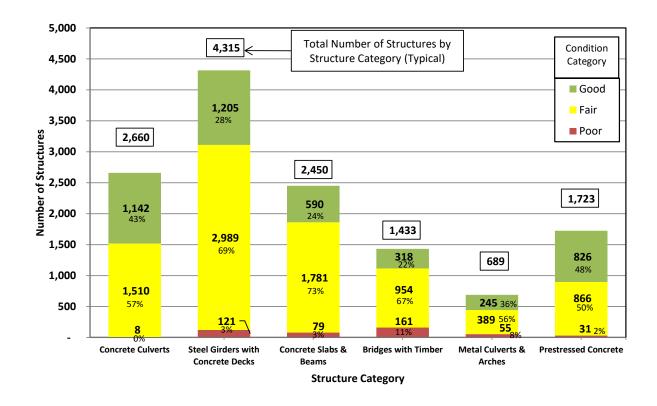


Figure 2-6- Count and Condition Data for Most Common Structure Categories (NBI Structures)

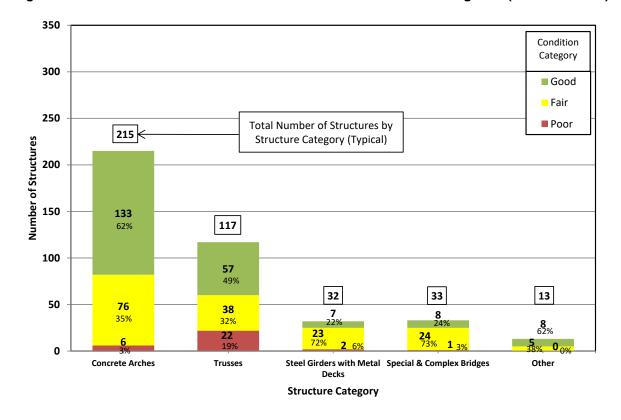


Figure 2-7- Count and Condition Data for Less Common Structures Categories (NBI Structures)

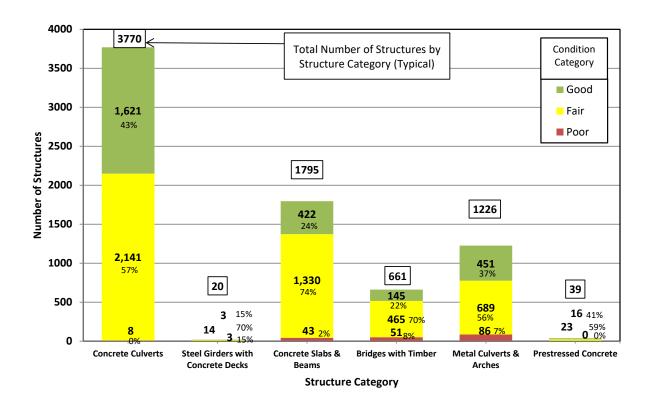


Figure 2-8- Count and Condition Data for Most Common Structure Categories (Non-NBI Structures)

Figure 2-9- Count and Condition Data for Less Common Structure Categories (Non-NBI Structures)

VDOT has also identified a group of "Special Structures" with characteristics that warrant additional consideration for maintenance, rehabilitation and replacement. Special Structures include movable bridges, tunnels, and large, significant, fixed-span bridges. They are considered "special" due to their complexity, maintenance and operations cost, level of risk, and importance. Determination of importance is based on several factors, including potential long detours, high traffic volumes, economic significance (shipping and vehicular), and access to vital facilities, including military bases and ports. A list of the Special Structures is provided in Table 2-4.

The program maintains a 50 Year Project Plan that prioritizes projects using a life-cycle approach for each Special Structure that VDOT maintains and operates. The plan is required by §33.2-1532 of the Code of Virginia, the Special Structure Fund. The plan defines the investment required to operate and maintain each Special Structure.

The 50 Year Plan uses a multi-variable formula to prioritize and select maintenance, improvement, and replacement projects. The three Special Structures currently under concession agreements – Route 895 Pocahontas Parkway and Elizabeth River Tunnels (Midtown and Downtown) – will not have projects included in the plan until the concession agreements end in years 2105 and 2069, respectively.

Table 2-4 VDOT's Special Structures

	STRUCTURE NAME	ROUTE CARRIED	DISTRICT
	Benjamin Harrison Bridge	Route 156	Richmond
	Chincoteague Bridge	Route 175	Hampton Roads
OGES	High Rise Bridge	I-64	Hampton Roads
BRII	Berkley Bridges – 2 Bridges	I-264	Hampton Roads
MOVABLE BRIDGES	Coleman Bridge	Route 17	Hampton Roads
MOV	James River Bridge	Route 17	Hampton Roads
	Eltham Bridge	Route 30/33	Fredericksburg
	Gwynn's Island Bridge	Route 223	Fredericksburg
	Big Walker Mountain Tunnel - Twin Bores	I-77	Bristol
	East River Mountain Tunnel - Twin Bores	I-77	Bristol
S	Hampton Roads Bridge Tunnel (HRBT) – 2 Tunnels	I-64	Hampton Roads
TUNNELS	Monitor Merrimac Memorial Bridge Tunnel (MMMBT)	I-664	Hampton Roads
1	Elizabeth River Midtown Tunnel – 2 Tunnels	Route 58	Hampton Roads
	Elizabeth River Downtown Tunnel – 2 Tunnels	I-264	Hampton Roads
	Rosslyn Tunnel	I-66	Northern Virginia
	460 Connector Bridge – 2 Bridges	Route 460	Bristol
Z	Smart Road Bridge	Smart Road	Salem
IXED-SPAN JRES	Varina-Enon Bridge	I-295	Richmond
	Pocahontas Parkway – 2 Bridges	Route 895	Richmond
SIGNIFICANT F STRUCTI	HRBT Approach Bridges – 4 Bridges	I-64	Hampton Roads
NIFIC	Willoughby Bay – 2 Bridges	I-64	Hampton Roads
SIG	MMMBT Approach Bridges – 3 Bridges	I-664	Hampton Roads
	Norris Bridge	Route 3	Fredericksburg

2.5 ANCILLARY STRUCTURES

VDOT is responsible for the inventory, inspection, and maintenance of 34,046 ancillary structures. VDOT's inventory includes five types of ancillary structures, two of which are further divided into subcategories:

- 1. High mast lighting structures
- 2. Camera pole structures
- 3. Signal structures
 - a. Span wires
 - b. Cantilever
 - c. Overhead span
- 4. Luminaires
- 5. Sign structures
 - a. Overhead
 - b. Cantilever
 - c. Butterfly
 - d. Bridge-parapet mounted

Figure 2-10 and Figure 2-11 indicate the distribution of the ancillary structures by district and type.

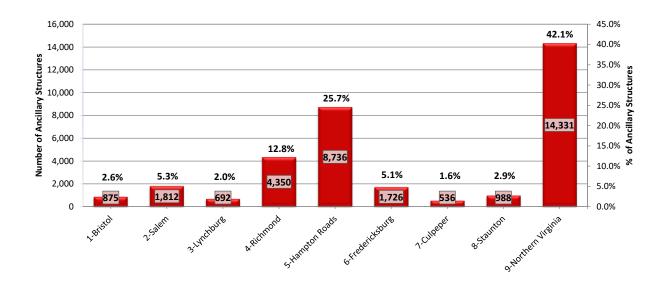


Figure 2-10- Distribution of Ancillary Structures by District

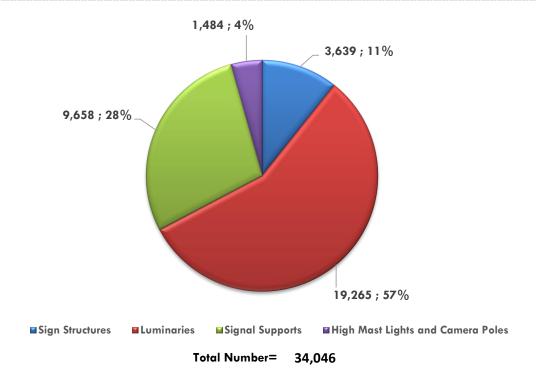


Figure 2-11- Distribution of Ancillary Structures by Type

3 CONDITION

3.1 CONDITION CATEGORIES (GOOD, FAIR, AND POOR STRUCTURES)

The purpose of a system preservation program is to extend the service life of structures. This requires a balanced approach, wherein work is performed on structures in all condition categories (good, fair, and poor). In order to provide an easily understood organizational system, structures are placed in one of these three condition categories based on the minimum general condition rating (GCR) of each structure.

The GCR is a numerical rating of the primary components of each structure, assigned during regular safety inspections. Definitions of GCRs are provided in VDOT's *Inventory and Appraisal Coding Guide for Virginia's Structures* and in Appendix D of this report. Measured on a 0-9 scale, with 0 representing a failed component and 9 representing excellent condition, a GCR is assigned to each bridge's deck, superstructure, and substructure components at each inspection. Large culverts receive a single GCR. The structures are inspected in accordance with federal criteria and VDOT's current Instructional and Informational Memorandum IIM-S&B-27. The minimum GCR for each bridge or large culvert is used to define its condition category. Definitions of the three condition categories are shown in Table 3-1.

 Condition Category
 Category Definition

 Good Structures
 Minimum GCR ≥ 7

 Fair Structures
 Minimum GCR = 5 or 6

 Poor Structures
 Minimum GCR ≤ 4

Table 3-1- Condition Categories for Structures

The condition category definitions in Table 3-1 were formally established by FHWA in 2017.

3.2 Performance Goals

3.2.1 General

Performance measurement is an essential tool for asset owners seeking to make the best use of limited funds. A sound performance measurement program requires extensive study of current and anticipated conditions to identify metrics that are meaningful, actionable, and practical to measure.

Virginia has been using performance measures since 2009, but with the adoption of the FAST Act, FHWA also began requiring states to use a system to track bridge conditions, establish performance targets, and report results for NBI structures on the NHS. Virginia honors the federal requirements, tracking and reporting bridge conditions in accordance with established guidelines. However, Virginia also recognizes that the particular challenges presented by our inventory and environment require a set of performance measures targeted to Virginia's asset management needs. Accordingly, Virginia has two sets of performance targets: state and federal.

3.2.2 State Performance Management Measures

In December 2019, Virginia's Commonwealth Transportation Board (CTB) passed a resolution to establish new state performance measures, shifting the focus in Virginia from replacement of poor structures to the preservation of the existing inventory. These performance measures were developed with the goal of sustaining the bridge inventory to an acceptable level of service through the year 2070. Accordingly, the performance targets are based on what can be sustained over 50 years, allowing a slow, managed decline of general condition ratings but maintaining the inventory to an acceptable condition through a focus on preservation activities and the incorporation of new technologies. Agenda Item No. 9 of the resolution adopted at the December 2019 CTB meeting established the following performance measures and targets for bridge conditions:

- Average general condition rating (GCR) weighted by Importance Factor (IF) ≥ 5.6 (50 year goal – near term targets will be adjusted accordingly)
- Percentage of structures by count in good and fair condition

o Interstate $\geq 97\%$ o Primary $\geq 93\%$ o Secondary/Urban $\geq 90\%$

No weight-restricted structures on the interstate system

The Importance Factor (IF) is a unitless measurement of the relative importance of each structure to the overall highway network. It was developed through a cooperative effort with the Virginia Transportation Research Council and uses objectively measured data such as traffic and detour length to calculate an importance value for each structure. Figure 3-1, which provides multi-year trends of average GCRs weighted by IF, shows the steady rate of deterioration since 2010 for all highway systems except the secondary/urban. Figure 3-2 provides average GCR weighted by IF for each district.

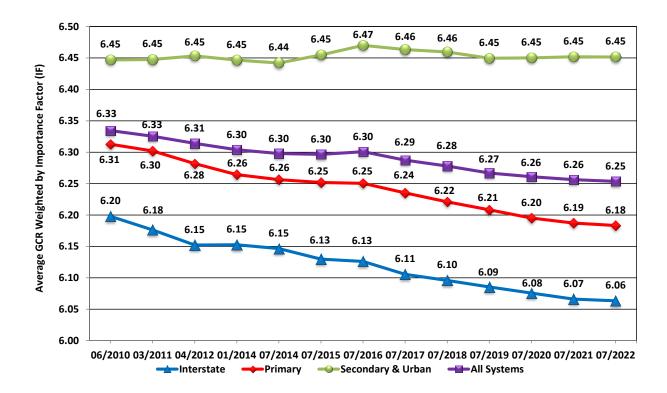


Figure 3-1- Multi-Year Trend of Average GCR Weighted by Importance Factor by Highway System

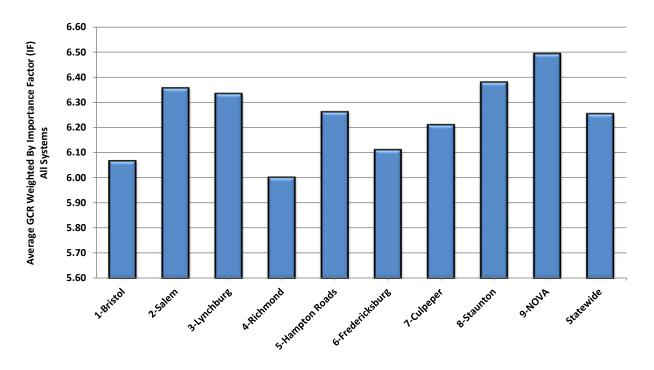


Figure 3-2- Average GCR Weighted by Importance Factor by District

The statewide goals established for the minimum percentage of structures in good and fair condition on each of the three highway systems are provided in Table 3-2, along with the current statewide performance. Figure 3-3 provides multi-year trends showing the percentage of structures in good and fair condition for each highway system. As previously indicated, the CTB established an additional performance measure regarding posted structures on the interstate system. This goal has been met as there are currently no interstate structures that are posted for weight restriction.

Table 3-2- Virginia's Targets for Percentage of Structures by Count in Good or Fair Condition

Highway System	Current Target	Current Statewide Performance			
Interstate	97.0%	99.3%			
Primary	93.0%	97.5%			
Secondary and Urban	90.0%	96.0%			
All Systems Combined	N/A	96.8%			

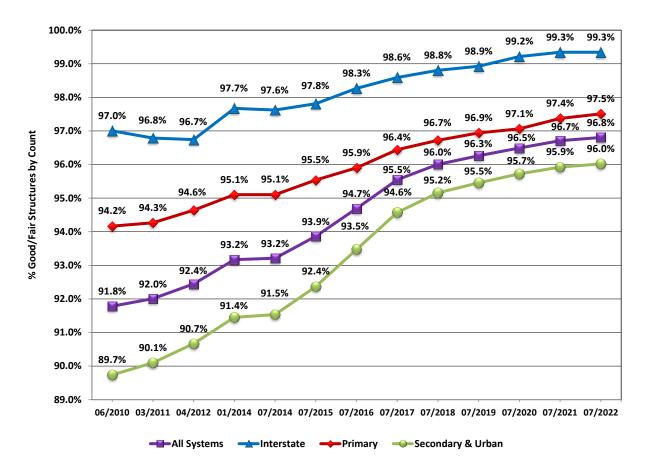


Figure 3-3- Multi-Year Trend of Percentage of Structures in Good or Fair Condition Statewide

3.2.3 Virginia's Best Practices/Recommended Targets for System Sustainability

The federal and statewide performance targets provide high-level, easily understood goals for the condition of the bridge inventory. However, more specific information is published for use by bridge managers to help them meet these overall goals. Accordingly chapter 32 of VDOT's *Manual of the Structure and Bridge Division, part 2,* establishes best practices for bridge preservation and recommended targets for system sustainability. The targets indicated in Chapter 32 are directed toward subject matter experts and are intended as a guide that will help stewards of the bridge inventory maintain conditions and reach the more general goals established by Virginia's Commonwealth Transportation Board. These best practice goals are:

- Maintain 90% of expansion joints in Condition State 1
- Eliminate 2% of the deck expansion joints in each district in each fiscal year
- Perform maintenance activities on at least 6% of the number of structures with a minimum GCR of 5 in each district in each fiscal year
- Perform maintenance activities on at least 2% of the number of structures with a minimum GCR of 6 in each district in each fiscal year
- Meet established targets for poor bridges on each highway system (see previous discussions)

These recommended targets were determined using an analysis of the annual transition of VDOT's structures from one condition category to another. Recognizing that the bridge maintenance program requires a balanced approach, where the maintenance needs of structures in each of the three condition categories are regularly addressed, the analysis sought to establish thresholds that would achieve the goal of maintaining the average GCR of the existing inventory over time. There is no unique solution for these goals (various combinations of thresholds for good, fair and poor could achieve the desired result of maintaining the average GCR).

Prior to establishing the actual thresholds, the transition study was performed to determine the number of structures whose minimum GCR either improves or deteriorates in any particular year. The initial study focused on the transition between 2009 and 2010, and the results of the study were used to establish a baseline and develop achievable goals for each condition category.

The study determined that system sustainability could be achieved with the goals that are now in Chapter 32. Furthermore, the Chapter 32 system sustainability goals above were deemed to be reasonably attainable with existing staff. However, the funding required to meet these goals remains significantly higher than the funding provided.

The most recent year-to-year transitions are displayed in Figure 3-4, which depicts the number of structures that transitioned from one condition category to another or moved up or down within a condition category. For example, the figure shows that during FY2022, 197 structures fell from good to fair condition, and 90 structures were improved from fair to good condition.

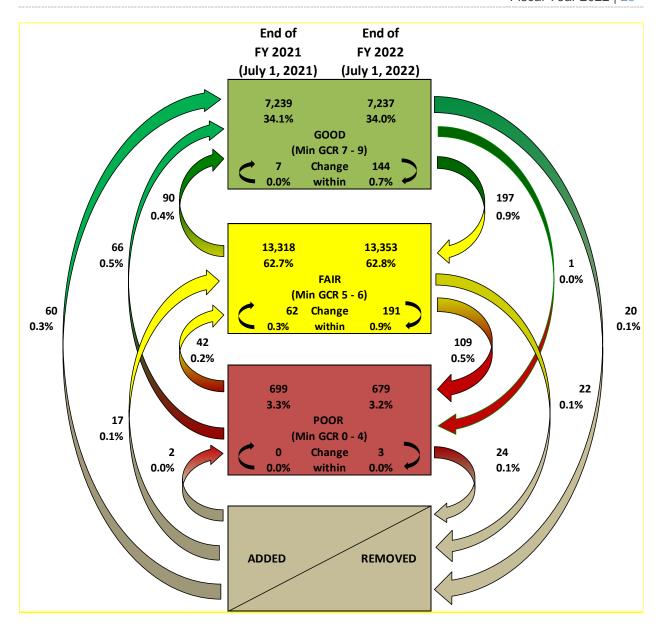


Figure 3-4- Annual Transitions between Good/Fair/Poor from End of FY 2021 to End of FY 2022

Note: Percentages for transitions between condition categories are based on the total number of structures in the inventory. For example, the 42 structures that were improved from poor to fair represents 0.2% of the total inventory.

Since each condition category encompasses a range of condition ratings, a "change within" tabulation was included to indicate transitions from one condition rating to another within any condition category. For example, structures classified as being in the "good" category may have experienced a deterioration from GCR9 to GCR7 while remaining in good condition in both years.

3.2.4 Federal Performance Management Measures

The 2012 federal transportation bill known as "Moving Ahead for Progress in the 21st Century" (MAP-21) required states to develop Transportation Asset Management Plans (TAMPs), which provide information about highway assets and associated management strategies. TAMPs are required to include state-established performance targets for NBI structures on the NHS and to

report progress toward those targets. TAMP performance measures and targets pertain exclusively to the population of NBI bridges on the NHS, irrespective of owner, including on- and off-ramps and bridges that cross a state border.

Federal Performance Management Measures for Poor and Good Structures: MAP-21 established the specific requirements for poor and good bridges below. No more than 10% of the deck area of NBI structures on the NHS may be poor.

- 1. Each state must establish 2-year and 4-year goals for the percentage of deck area of NBI bridges on the NHS in poor condition
- 2. Each state must establish 2-year and 4-year goals for the percentage of deck area of NBI bridges on the NHS in good condition

Table 3-3 shows Virginia's 2-year and 4-year targets, along with actual performance for good and poor deck area.

Percentage of Deck Area of NBI Bridges on the National Highway System										
Condition	Virginia's 2-Year Target 2023	Virginia's 4-Year Target 2025	Federal Limit	Current Status						
Good	> 27.2%	> 25.1%	-	29.8%						
Poor	< 3.3%	< 3.6%	< 10%	2.9%						

Table 3-3- Virginia's Status with FHWA's Required Performance Targets

Notes:

- a. Data used by FHWA for the performance targets represent data as of the end of the referenced year although reported early in the following year including the ongoing changes over that period. The actual performance information is not usually finalized until the latter part of the following year. An example is as follows: the four-year 2025 target will use data from December 31, 2025 reported to FHWA in October of 2026.
- b. Federal policy requires that the data relating to federal performance management include federally-owned and federally-managed bridges. These federal bridges are not included in data used elsewhere in this report except for Figure 3-25 (see note below Figure 3-25 for further explanation).
- c. The data presented throughout this report addresses information for Virginia Responsible Structures as of July 1, 2022 (including the current status in Table 3-3, and data in Table 3-4 and Figures 3-5 to 3-8).
- d. As a result of bullets 'a', 'b' and 'c' above, there are small differences between the federal performance management condition data and other data reported herein including the current status in Table 3-3.
- e. Information of the table was retrieved from https://www.ctb.virginia.gov/resources/2022/sept/res/12.pdf.

While the federal performance management targets apply statewide, irrespective of highway system or district, Table 3-4 is provided as supplemental information to show how performance varies between districts and highway systems.

Table 3-4- Percentage of Deck Area of Poor NBI Structures on the NHS by District and Highway
System

District	Perd	Percentage of Poor Deck Area of NBI Bridges on NHS										
District	Interstate	Primary	Secondary & Urban	All								
1 Bristol	2.9%	1.8%	32.7%	2.4%								
2 Salem	0.0%	1.3%	0.0%	0.8%								
3 Lynchburg	N/A	0.9%	0.0%	0.9%								
4 Richmond	5.7%	2.3%	3.0%	3.8%								
5 Hampton Roads	2.6%	5.8%	0.0%	4.0%								
6 Fredericksburg	0.0%	5.4%	0.0%	4.1%								
7 Culpeper	0.0%	7.0%	0.0%	3.2%								
8 Staunton	0.0%	4.9%	0.0%	1.9%								
9 NOVA	0.3%	2.1%	4.5%	1.1%								
Statewide	2.2%	3.7%	3.1%	2.9%								

Figure 3-5, Figure 3-6, Figure 3-7, and Figure 3-8 provide current and historic performance information regarding the area of NBI bridges on the NHS in good or poor condition. See Table 3-3 for the most recent targets and, Note a, for 2025 target explanation.

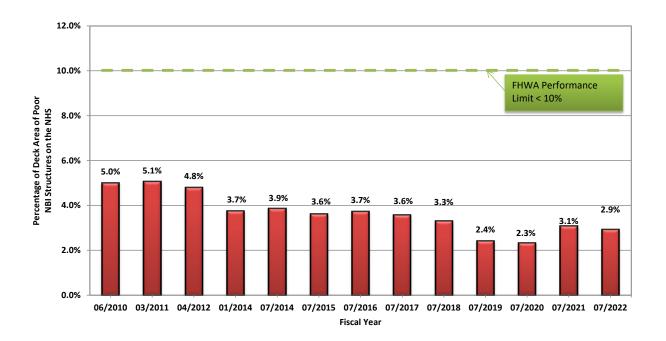


Figure 3-5- Multi-Year Performance History of Percentage of Deck Area of Poor NBI Structures on the NHS

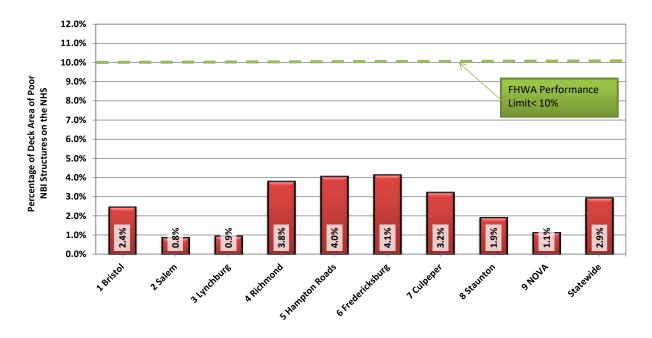


Figure 3-6- Percentage of Deck Area of Poor NBI Structures on the NHS by District

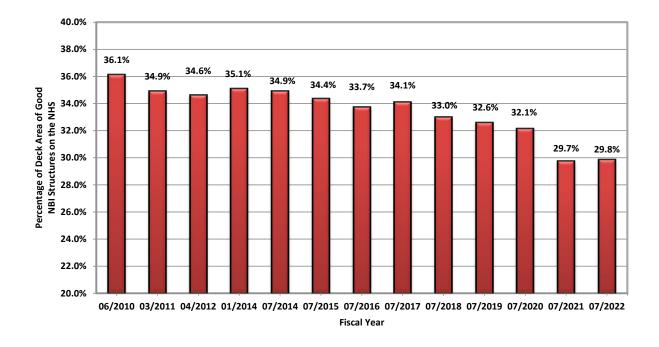


Figure 3-7- Multi-Year Performance History of Percentage of Deck Area of NBI Structures on the NHS in Good Condition

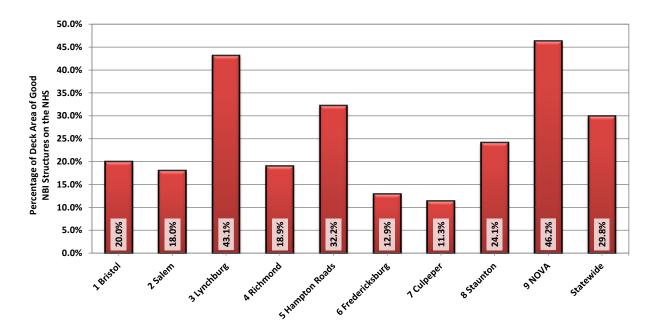


Figure 3-8- Percentage of Deck Area of NBI Structures on the NHS in Good Condition by District

3.3 CURRENT CONDITIONS - STRUCTURES

The following pages contain charts and tables providing information about the current condition of Virginia's structures. The charts and tables detail the current state of Virginia's poor and weight-posted structures, as well as information about the percentage of good, fair, and poor structures. They are generally self-explanatory and are thus provided without narrative.

3.3.1 Percentage and Count of Poor Structures

- Figure 3-9 addresses poor Structures by count by district
- Figure 3-10 addresses poor NBI structures on the NHS by count
- Figure 3-11 through Figure 3-13 address poor structures by highway system and count

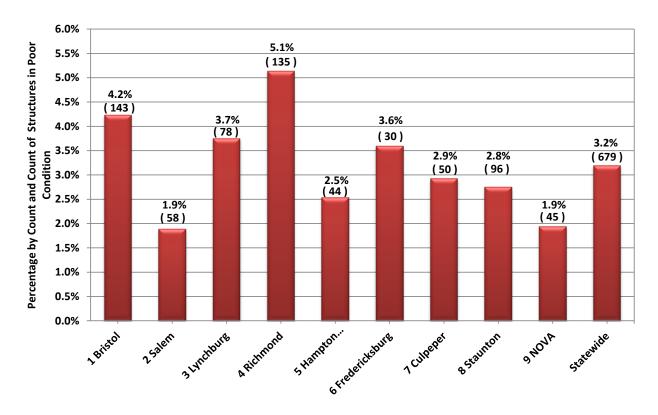


Figure 3-9- Percentage and Count of Poor Structures by District – All Systems

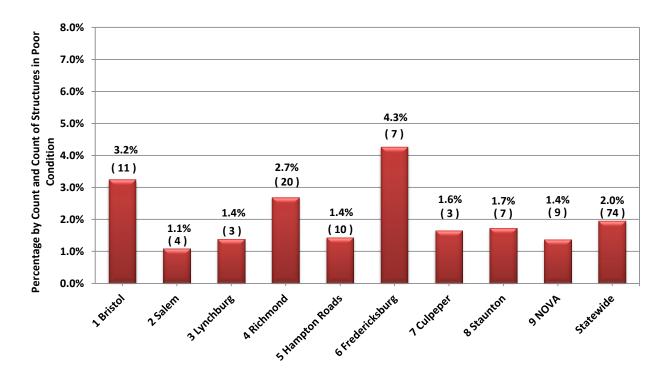


Figure 3-10- Percentage and Count of Poor NBI Structures on the NHS by District

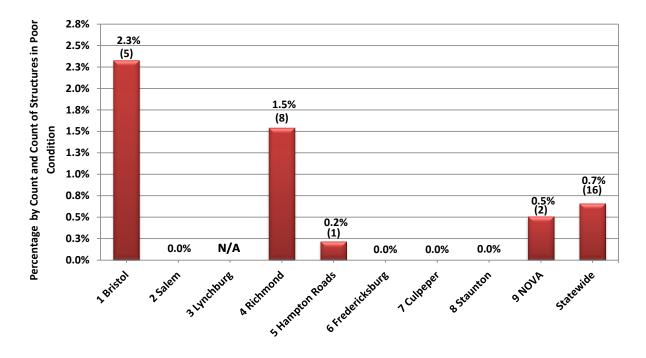


Figure 3-11- Percentage and Count of Poor Structures on Interstate System by District

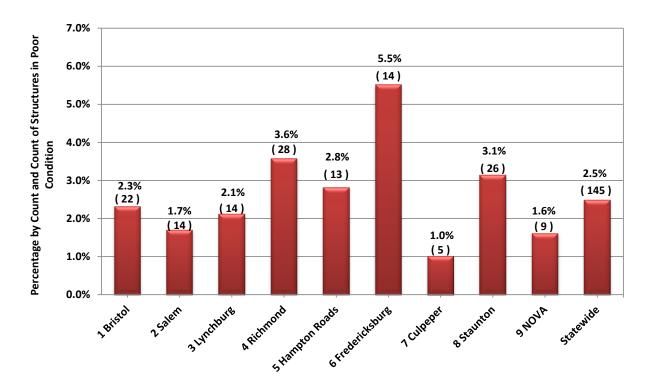


Figure 3-12- Percentage and Count of Poor Structures on Primary System by District

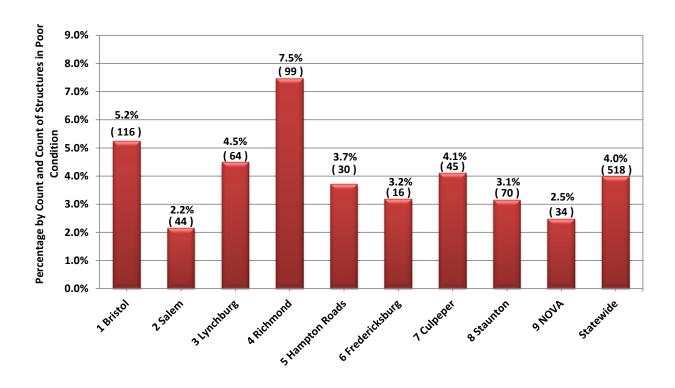


Figure 3-13- Percentage and Count of Poor Structures on Secondary and Urban Systems by District

3.3.2 Detailed Deck Area and Conditions of NBI Structures on the NHS

Figure 3-14 and Table 3-5 show the deck area of NBI structures on the NHS. Figure 3-15 and Table 3-6 show the poor deck area for NBI structures on the NHS. Figure 3-15 shows that the statewide total poor deck area is 2,037,256 square feet, which is well below the Federal (10%) limit of 6,986,711 square feet.

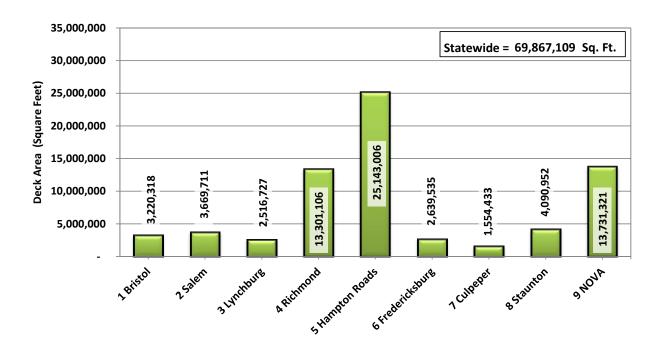


Figure 3-14- Deck Area of NBI Structures on NHS by District

Table 3-5- Deck Area of NBI Structures on NHS by District and Highway System

District	Deck Area	Deck Area of NBI Structures on NHS (Squ		
District	Interstate	Primary	Secondary & Urban	Total
1 Bristol	1,547,655	1,659,386	13,278	3,220,318
2 Salem	1,223,608	2,409,810	36,293	3,669,711
3 Lynchburg	N/A	2,511,831	4,896	2,516,727
4 Richmond	5,824,200	7,085,332	391,574	13,301,106
5 Hampton Roads	10,957,306	12,601,750	1,583,949	25,143,006
6 Fredericksburg	509,795	2,011,336	118,404	2,639,535
7 Culpeper	814,355	705,502	34,576	1,554,433
8 Staunton	2,496,099	1,573,604	21,250	4,090,952
9 NOVA	7,965,385	5,282,647	483,289	13,731,321
Statewide	31,338,403	35,841,198	2,687,508	69,867,109

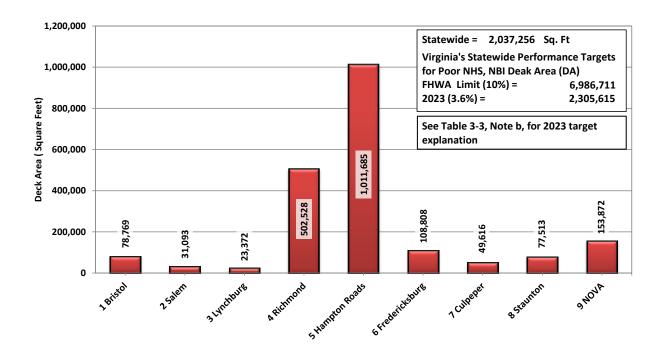


Figure 3-15- Deck Area of Poor NBI Structures on NHS by District

Table 3-6- Deck Area of Poor NBI Structures on NHS by District and Highway System

District	Area of Poor N	Area of Poor NBI Structures on NHS By Highway System (Square Feet)				
	Interstate	Primary	Secondary & Urban	Total		
1 Bristol	44,619	29,813	4,337	78,769		
2 Salem	0	31,093	0	31,093		
3 Lynchburg	N/A	23,372	0	23,372		
4 Richmond	331,107	159,581	11,840	502,528		
5 Hampton Roads	282,900	728,785	0	1,011,685		
6 Fredericksburg	0	108,808	0	108,808		
7 Culpeper	0	49,616	0	49,616		
8 Staunton	0	77,513	0	77,513		
9 NOVA	21,657	110,666	21,549	153,872		
Statewide	680,283	1,319,247	37,727	2,037,256		

3.3.3 Condition Data by Deck Area

- Figure 3-16 and Table 3-7 address the deck area of all structures
- Figure 3-17 and Tables 3-8 and 3-9 address poor deck area
- Figure 3-18 and Table 3-10 address weight-posted deck area
- Figure 3-19 and Table 3-11 address the number of weight-posted structures

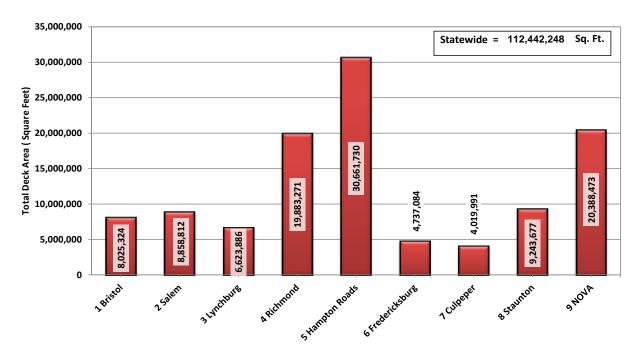


Figure 3-16- Total Deck Area of All Structures by District

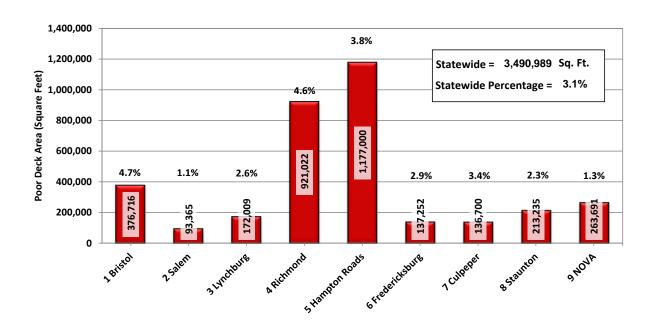


Figure 3-17- Deck Area of Poor Structures by District

Table 3-7- Deck Area of All Structures by District and Highway System

District	Area o	Area of All Structures (Sq. Ft.) By Highway System				
District	Interstate	Primary	Secondary & Urban	Total		
1 Bristol	1,615,105	3,702,925	2,707,294	8,025,324		
2 Salem	1,387,990	4,231,427	3,239,395	8,858,812		
3 Lynchburg	N/A	4,024,316	2,599,571	6,623,886		
4 Richmond	6,054,623	9,248,375	4,580,273	19,883,271		
5 Hampton Roads	11,075,509	15,290,632	4,295,589	30,661,730		
6 Fredericksburg	529,410	2,981,026	1,226,647	4,737,084		
7 Culpeper	836,284	1,507,427	1,676,279	4,019,991		
8 Staunton	2,626,521	3,380,342	3,236,815	9,243,677		
9 NOVA	8,146,371	6,169,894	6,072,208	20,388,473		
Statewide	32,271,813	50,536,364	29,634,071	112,442,248		

Table 3-8- Deck Area of Poor Structures by District and Highway System

District	Area of	Poor Structure	System	
District	Interstate	Primary	Secondary & Urban	Total
1 Bristol	44,619	116,182	215,915	376,716
2 Salem	0	46,289	47,076	93,365
3 Lynchburg	N/A	71,442	100,567	172,009
4 Richmond	331,107	327,188	262,726	921,022
5 Hampton Roads	282,900	856,874	37,225	1,177,000
6 Fredericksburg	N/A	116,601	20,651	137,252
7 Culpeper	N/A	85,237	51,462	136,700
8 Staunton	N/A	116,279	96,956	213,235
9 NOVA	24,323	137,852	101,516	263,691
Statewide	682,949	1,873,946	934,095	3,490,989

Table 3-9- Percentage of Poor Condition Deck Area by District and Highway System

District	Percentage of Poor Deck Area					
District	Interstate	Primary	Primary Secondary & Urban			
1 Bristol	2.8%	3.1%	8.0%	4.7%		
2 Salem	0.0%	1.1%	1.5%	1.1%		
3 Lynchburg	N/A	1.8%	3.9%	2.6%		
4 Richmond	5.5%	3.5%	5.7%	4.6%		
5 Hampton Roads	2.6%	5.6%	0.9%	3.8%		
6 Fredericksburg	0.0%	3.9%	1.7%	2.9%		
7 Culpeper	0.0%	5.7%	3.1%	3.4%		
8 Staunton	0.0%	3.4%	3.0%	2.3%		
9 NOVA	0.3%	2.2%	1.7%	1.3%		
Statewide	2.1%	3.7%	3.2%	3.1%		

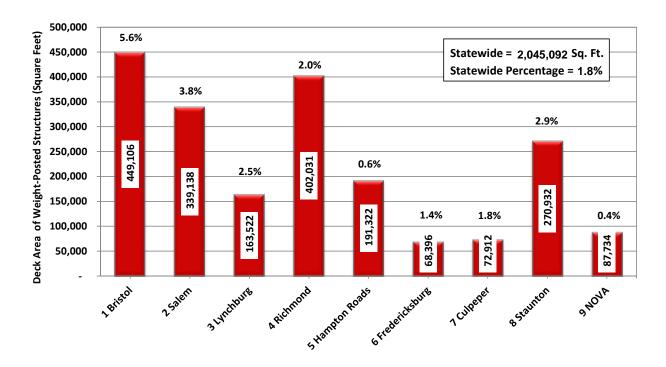


Figure 3-18- Deck Area of Weight-Posted Structures by District

Table 3-10- Deck Area of Weight-Posted Structures by District and Highway System

District	Deck Area of Weight-Posted Structures (Square Feet)				
District	Interstate	Primary	Secondary & Urban	Grand Total	
1 Bristol	0	122,858	326,247	449,106	
2 Salem	0	119,877	219,260	339,138	
3 Lynchburg	0	1	163,522	163,522	
4 Richmond	0	120,776	281,255	402,031	
5 Hampton Roads	0	95,788	95,534	191,322	
6 Fredericksburg	0	21,669	46,728	68,396	
7 Culpeper	0	7,380	65,532	72,912	
8 Staunton	0	101,916	169,015	270,932	
9 NOVA	0	39,963	47,771	87,734	
Statewide	0	630,228	1,414,864	2,045,092	

Figure 3-19- Number of Weight-Posted Structures by District

Table 3-11- Number of Weight-Posted Structures by District and Highway System

District	Number of Weight-Posted Structure			
District	Interstate	Primary	Secondary & Urban	Grand Total
1 Bristol	0	89	268	357
2 Salem	0	27	178	205
3 Lynchburg	0	-	149	149
4 Richmond	0	14	195	209
5 Hampton Roads	0	9	62	71
6 Fredericksburg	0	12	34	46
7 Culpeper	0	3	61	64
8 Staunton	0	30	115	145
9 NOVA	0	3	71	74
Statewide	0	187	1,133	1,320

3.4 CURRENT CONDITIONS - ANCILLARY STRUCTURES

Conditions of ancillary structures are summarized in Table 3-12 and Figure 3-20. The condition ratings for ancillary structures have been limited to 5 ratings, which represents a change from previous years, where 10 ratings, correlating to the GCRs for bridges were coded. These five categories are good (7), fair (5), poor (4), critical (2), and failed condition (0). The major components that are rated are foundation, parapet mount (signs only) and superstructure. The overall structure receives a condition category rating that is the minimum component rating (superstructure, parapet mount, foundation).

Table 3-12- Percentage and Count of Ancillary Structures by Condition Category and Structure
Type

Structure Type	Condition Categories (No. of Structures)			Condi	ition Categ	jories	
	Good	Fair	Poor	Total	Good	Fair	Poor
Signs	1,230	1,042	1,367	3,639	33.8%	28.6%	37.6%
Luminaires	6,401	6,849	6,015	19,265	33.2%	35.6%	31.2%
Traffic Signals	3,282	2,308	4,068	9,658	34.0%	23.9%	42.1%
High Mast Lights and Camera Poles	772	420	292	1,484	52.0%	28.3%	19.7%
Total	11,685	10,619	11,742	34,046	34.3%	31.2%	34.5%

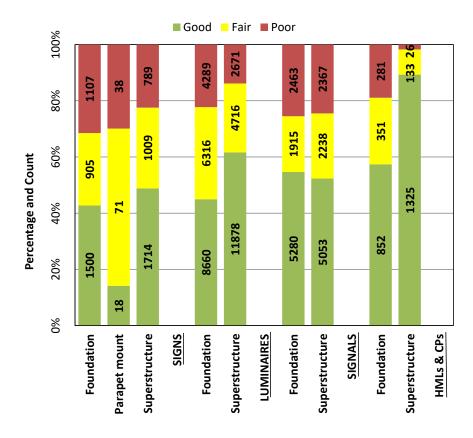


Figure 3-20- Percentage and Count of Ancillary Structures by Condition Category and Structure
Type

Note: HMLs & CPs are High Mast Lights and Camera Poles

3.5 CONDITION TRENDS - GENERAL

Table 3-13 and Table 3-14 show the number of poor structures by district and the changes that occurred between the start and end of FY2022.

Table 3-13- Change in Number of Poor Structures

District	Number of Poor Structures				
DISTICT	07/2021	07/2022	% Change		
1 Bristol	145	143	-1.4%		
2 Salem	64	58	-9.4%		
3 Lynchburg	94	78	-17.0%		
4 Richmond	123	135	9.8%		
5 Hampton Roads	52	44	-15.4%		
6 Fredericksburg	36	30	-16.7%		
7 Culpeper	52	50	-3.8%		
8 Staunton	98	96	-2.0%		
9 NOVA	35	45	28.6%		
Statewide	699	679	-2.9%		

Table 3-14- Number of Structures Improved from or Deteriorated into Poor Condition

District	Number of Poor Structures Improved	Number of Structures Deteriorated into Poor State	Net Change
1 Bristol	23	21	2
2 Salem	17	11	6
3 Lynchburg	23	7	16
4 Richmond	14	26	-12
5 Hampton Roads	11	3	8
6 Fredericksburg	10	4	6
7 Culpeper	9	7	2
8 Staunton	18	16	2
9 NOVA	7	17	-10
Statewide	132	112	20

Note: Net change = Number of structures deteriorated to poor status – Number of poor structures restored or removed.

Figure 3-21 through Figure 3-24 provide the percentage and total number of poor structures for each of the Virginia Highway Systems for the last thirteen years. The red lines indicate the percentage of structures by count that are poor, green lines indicate the percentage of structures by deck area that are poor, and the blue bars show the number of poor structures.

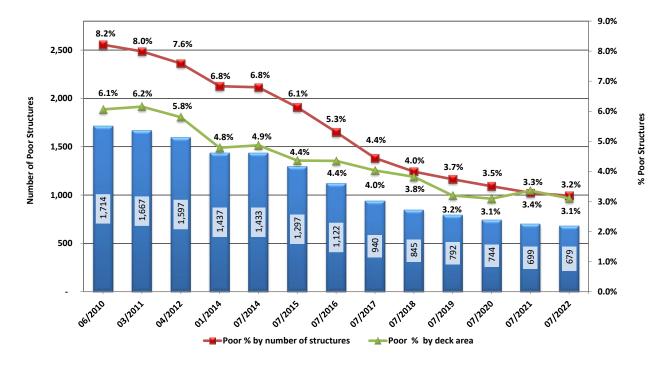


Figure 3-21- Multi-Year Performance History of Percentage of Poor Structures on All Systems

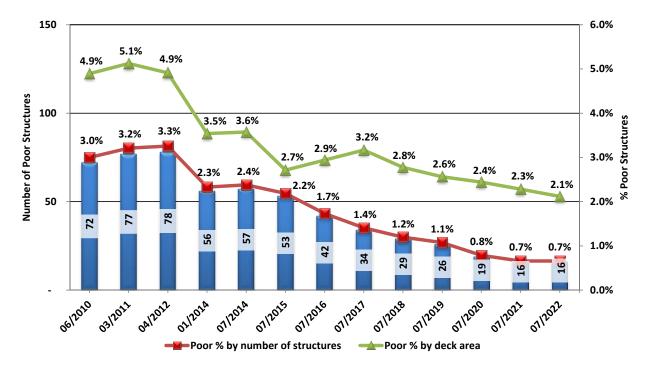


Figure 3-22- Multi-Year Performance History of Percentage of Poor Structures for Interstate System

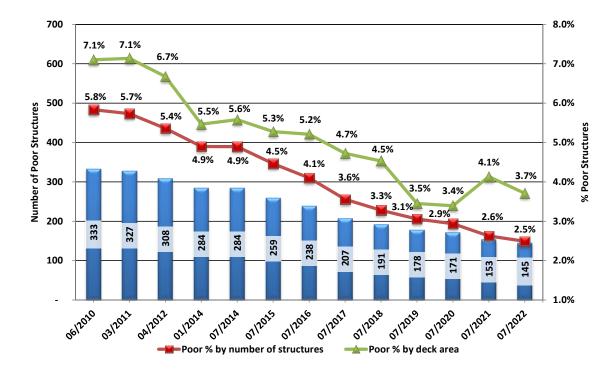


Figure 3-23- Multi-Year Performance History of Percentage of Poor Structures for Primary System by Year

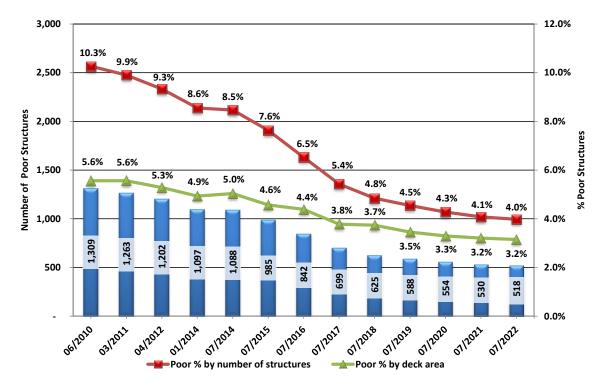


Figure 3-24- Multi-Year Performance History of Percentage of Poor Structures for Secondary and Urban Systems

Figure 3-25 compares the percentage of poor NBI structures in Virginia versus the nation as a whole from 1999 to 2020. The dates shown indicate the data year and not the year published. See Section 3.2.4 for further explanation.

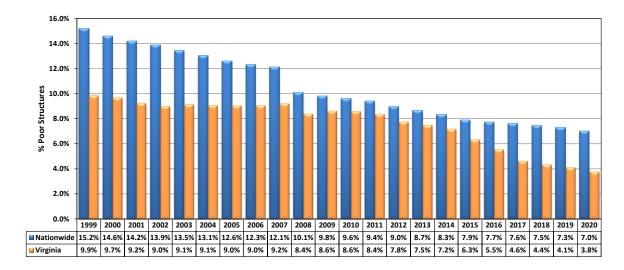


Figure 3-25- Multi-Year Comparison of Virginia's NBI Poor Structures to the National Average

Note: Data in the figure are from FHWA's database, which includes structures that are the responsibility of the Federal Government and therefore not the responsibility of the Commonwealth of Virginia. FHWA's database also uses a different reporting date than the information in this report (see footnotes to Table 3-3). As a result, there are slight differences between Figure 3-25 and the information provided elsewhere in this report.

4 DELIVERY OF THE MAINTENANCE, INSPECTION, AND CONSTRUCTION PROGRAMS

4.1 Maintenance (Bridge Crews & Contracts)

4.1.1 State Force Bridge Crews

Each of VDOT's districts has two or more maintenance crews whose primary function is to maintain state-owned structures. They are supplemented by hired equipment contractors to assist in their work. The type of work they perform varies from preventive maintenance to complete replacement of smaller structures. The types of activities performed are indicated in Table 4-1.

Table 4-1- Activities Performed by VDOT's Bridge Crews

Type of Work	Typical Activities performed
Preventive Maintenance	Deck sweeping, deck washing, beam end washing, sealing cracks, thin overlays, joint rehabilitation, large culvert cleaning, and vegetation removal
Restorative Maintenance	Overlays, rail repair, deck patching, superstructure repairs, substructure repairs, bearing repairs, painting, large culvert repairs
Rehabilitation	Deck and superstructure replacement, major repairs to substructures and large culverts
Replacement	Complete bridge and large culvert replacement
Other	Special purchases of equipment or materials

Bridge crews rapidly and effectively respond to the needs of the bridge inventory, with particular focus on the secondary system. Table 4-2 indicates the number of crews and classified crew members in each district. Accomplishments by bridge crews are reported in Table 4-3.

Table 4-2- VDOT's Bridge Maintenance Crews

District	VDOT State Force Bridge Crews			
Diotriot	No. Crews	No. Crew Members		
Bristol	6	36		
Salem	6	35		
Lynchburg	4	30		
Richmond	4	30		
Hampton Roads	4	29		
Fredericksburg	2	16		
Culpeper	4	27		
Staunton	5	36		
NOVA	3	21		
Statewide	38	260		

Table 4-3- FY2022 Accomplishments of VDOT's Bridge Maintenance Crews, and Number of Structures Preserved, Rehabilitated, or Replaced

	Preser	vation					Total		
District	Preventative	Restorative	Rehabi	Rehabilitation		Replacement		Accomplishments	
	No.	No.	No.	# Poor	No.	# Poor	No.	# Poor	
1 Bristol	1,008	109	16	2	21	14	1,154	16	
2 Salem	618	163	0	0	25	4	806	4	
3 Lynchburg	281	53	7	3	15	14	356	17	
4 Richmond	96	12	31	12	0	0	139	12	
5 H. Roads	150	50	12	3	0	0	212	3	
6 F'burg	70	12	3	0	3	2	88	2	
7 Culpeper	107	107	9	9	2	2	225	11	
8 Staunton	927	2	10	4	18	10	957	14	
9 NOVA	220	44	3	3	2	2	269	5	
Statewide	3,477	552	91	36	86	48	4,206	84	

4.1.2 Contracts

In addition to its use of state-force bridge crews, VDOT partners with private industry to deliver its bridge maintenance program. There are several types of contracts that VDOT employs to accomplish bridge maintenance work:

- Task-order consultant contracts for design of bridge rehabilitation projects: VDOT has a group of qualified professional engineering consultants who are called upon to provide design, construction support, and engineering expertise as required.
- On-call maintenance contracts: VDOT uses indefinite quantity contracts with specific
 unit prices to perform bridge maintenance, repair, and preservation work through task
 orders. Also referred to as "on-call", these contracts may be general in nature,
 encompassing a wide variety of work, or they may be more specific, targeting narrower
 areas of contractor expertise such as painting or traffic control. On-call contracts are
 usually district-based or regional.
- **Hired equipment contracts:** Many VDOT district bridge offices use hired equipment contracts to provide equipment and operators on an as-needed basis. These contracts are often limited to one or two counties within a particular district.
- Material purchase contracts: VDOT has several statewide contracts for materials such
 as lug bolts and precast concrete slabs. These contracts tend to provide better pricing by
 increasing the quantity. They also provide districts with ready access to materials without
 individual procurements, thus reducing administrative burden.

4.2 INSPECTION, LOAD RATING AND PERMITTING

4.2.1 Bridge, Ancillary Structure, and Tunnel Inspection

Bridge and Culvert Inspection: VDOT uses its comprehensive inspection program to evaluate and monitor the conditions of its structures. The data collected during inspections is used as the primary source of information for determining maintenance, repair and replacement needs. NBI structures and non-NBI bridges receive detailed inspections at regular intervals not exceeding 24 months. Non-NBI large culverts are inspected at intervals not exceeding 48 months. Table 4-4 provides minimum inspection frequencies.

Inspectors use condition ratings to describe each existing structure. As detailed previously, these condition ratings are based on FHWA criteria. The condition assessments of the structures are performed by qualified inspectors, and all assessments are performed in accordance with the NBIS as well as VDOT's policies and procedures. VDOT's inspection procedures and requirements are detailed in VDOT's current Instructional and Informational Memorandum IIM-S&B-27.

	Frequency of Inspections			
Structure Type	NBIS	VDOT*		
Bridges	2 Years	2 Year or 1 Year (SD or Posted)		
Culverts	2 Years	2 Year (NBI) or 4 Year (Non-NBI)		
Fracture Critical Structures	2 Years	2 Years		
Fatigue Prone Detail	2 Years	1 or 2 Years		
Underwater	5 Years	5 Years		
Sign Structures	No Requirement	2 - 6 Years		
Signal Structures	No Requirement	4 Years		
Highmast Light Poles	No Requirement	2 - 4 Years		
Camera Poles	No Requirement	4 Years		
Luminaires	No Requirement	4 Years		

Table 4-4- Inspection Frequencies

Ancillary Structure Inspection: VDOT utilizes a commercial inventory and inspection software system (HMMS) to maintain data for its ancillary structures. HMMS became available in December 2017, and data collection switched from the previous ancillary structures database(s) to HMMS. This report relies on merged data from the previous ancillary structures database(s) and HMMS.

Inspections of the ancillary structures are usually performed on a four-year cycle, but the required inspection interval varies depending on the purpose, condition, and type of the structure. At the time of each inspection, an inspector assigns condition ratings to describe each of the major structural components of each structure. These condition ratings are based on criteria similar to

^{*} District structure and bridge engineers may choose to inspect structures more frequently based on the conditions found during the inspections. Bridge and culvert inspection frequencies are mandated, but ancillary structure inspection frequencies may be extended if necessary.

those defined by FHWA for bridge inspection. The condition assessments of the structures are performed by qualified inspectors, and assessments are performed in accordance with VDOT's policies and procedures.

VDOT's ancillary structure inspection procedures and requirements are detailed in VDOT's current Instructional and Informational Memoranda IIM-S&B-90, and VDOT's "Traffic Ancillary Structures Inventory and Inspection Manual."

Tunnel Inspection: In August 2015, FHWA issued the National Tunnel Inspection Standards (NTIS), after which VDOT's Structure and Bridge Division created a tunnel inspection program to implement the NTIS in Virginia. Inspectors use condition states for structural, civil, and functional system elements as defined in FHWA Publication No. FHWA-HIF-15-006, *Specifications for the National Tunnel Inventory*, to describe each existing tunnel. As detailed previously, these condition ratings are based on FHWA criteria. The condition assessments of the structures are performed by qualified inspectors and all assessments are performed in accordance with the NTIS as well as VDOT's policies and procedures. VDOT's inspection procedures and requirements are detailed in VDOT's current Instructional and Informational Memorandum IIM-S&B-97 and in tunnel specific procedures. NTI tunnels owned by other Virginia entities (localities, toll authorities, etc.) must follow the minimum requirements for tunnel safety inspection established by the NTIS. Tunnel inspections were performed for seven tunnels in FY2022. Two consultant contracts for tunnel engineering have been used to perform tunnel inspections for VDOT maintained tunnels. Quality Control (QC) and Quality Assurance (QA) for tunnel inspection are described in Instructional and Informational Memorandum IIM-S&B-98.

Inspection Program Delivery and Costs: The structure safety inspection program provides the data for most of Virginia's maintenance and bridge management decisions. In FY2022, VDOT inspected 9,575 bridges and culverts at an expense of \$33.6 million, utilizing in-house inspection staff and consultant contracts. Also, VDOT inspected 5,678 ancillary structures at an expense of \$7.9 million.

VDOT also uses consultants to perform inspections on ancillary structures. There are a total of 12 consultant contracts: eight statewide, two district specific and two regional, all providing combined bridge, underwater, large culvert, and ancillary inspection, as well as load rating services. Table 4-4 shows VDOT's inspection practices for inspection frequency compared to the NBIS. Table 4-5 shows the number of bridge, large culvert and ancillary structure inspections conducted by each district.

NBI bridges owned by other Virginia entities (localities, toll authorities, etc.) must follow the minimum requirements for bridge safety inspection established by the NBIS.

In addition to GCRs, VDOT inspectors have been collecting and recording detailed structural element data for over 20 years. These data are used by VDOT in its Bridge Management System (BMS), which is used to determine current and future maintenance and preservation needs.

The inspection reports list repair recommendations for each structure. At the time of inspection, the inspectors utilize their experience and judgment to determine the immediacy of the need for maintenance and to prioritize the recommended repairs accordingly. Many of VDOT's inspectors and all team leaders have completed FHWA's NHI training course "Inspection and Maintenance

of Ancillary Highway Structures" (<u>FHWA-NHI-130087</u>) and draw on this training when performing inspections.

Inspection Program Quality Control and Quality Assurance (QC/QA): The accuracy, thoroughness, and completeness of the bridge safety inspections are essential. The inspections are used to evaluate each structure's safety and to make decisions on planning, budgeting, and performance of maintenance, repair, rehabilitation, and replacement of VDOT's structures. Since 1991, it has been the policy of VDOT's Structure and Bridge Division to provide rigorous quality control and quality assurance (QC/QA) of the structure safety inspection program. In January 2005, the NBIS portion of the Code of Federal Regulations was amended to require each state to "Assure systematic quality control and quality assurance procedures are used to maintain a high degree of accuracy and consistency in the inspection program. The QA program includes periodic field review of inspection teams, periodic bridge inspection refresher training for program managers and team leaders, and independent review of inspection reports and computations." The Structure and Bridge Division meets these NBIS requirements with its quality control and quality assurance programs.

Table 4-5- Number of Inspections Performed on VDOT-Owned Structures in FY2022

	Number of Inspections							
	Bridges		Large Culverts		Α	ncillary		
District	No.	Percentage	No.	Percentage	No.	Percentage	Total No. Structures	
1 Bristol	1,199	17%	324	12%	109	2%	1,632	
2 Salem	1,112	16%	254	10%	370	7%	1,736	
3 Lynchburg	623	9%	343	13%	25	0%	991	
4 Richmond	942	14%	325	12%	1,342	24%	2,609	
5 Hampton Roads	547	8%	178	7%	509	9%	1,234	
6 Fredericksburg	226	3%	186	7%	227	4%	639	
7 Culpeper	574	8%	271	10%	340	6%	1,185	
8 Staunton	1,083	16%	390	15%	136	2%	1,609	
9 NOVA	629	9%	369	14%	2,620	46%	3,618	
Total	6,935	100%	2,640	100%	5,678	100%	15,253	

In 2008, VDOT's Structure and Bridge Division developed Information and Instruction Memorandum (IIM) <u>IIM-S&B-78</u> (revised since release), describing the bridge safety inspection Quality Control(QC)/Quality Assurance(QA) program, which requires the following:

In accordance with the NBIS, program managers and team leaders must successfully complete an FHWA-approved comprehensive bridge inspection training course. Within VDOT, all bridge safety inspection personnel will successfully complete the National Highway Institute (NHI) course "Safety Inspection of In-Service Bridges" (FHWA-NHI-130055) within the first five years of employment in bridge inspection. VDOT's Structure and Bridge Division also requires inspection personnel successfully complete the NHI course "Bridge Inspection Refresher Training" (FHWA-NHI-130053) every five years.

Underwater inspectors are required to fulfill the training requirements as set forth in the NBIS and the VDOT IIM-S&B-78.

VDOT's central office and district offices have a responsibility to review and validate inspection reports and inventory data. Discrepancies found during the field and office reviews performed by district and central office personnel are documented in a written report and shared with all parties involved. The central office conducted its annual QA review on each of the nine district bridge inspection programs during FY2022. A review of load ratings for a sample of bridges was a key component of the QA reviews.

The Virginia NBI Data was accepted by FHWA with no significant errors. VDOT has worked with FHWA to review all potential errors, and to provide clarification and correction where necessary.

FHWA conducted its annual NBIS compliance review from June 14, 2021 to December 13, 2021, with a draft report provided on December 13, 2021. VDOT had 45 days to address any deficiencies that were identified. The compliance review consisted of a review of the statewide inventory/database/organization/procedures for structure (bridge and large culvert) safety inspections and a QA review of a sample of structure records and structure field reviews of each of the nine districts. The National Bridge Inspection Program Final Summary of Metrics Performance Year 2022 (PY2022) review found VDOT Compliant with 22 of the 23 NBIS metrics. VDOT was found to have successfully implemented the Plan of Corrective Action for Metric 3 (Qualifications of Personnel – Team Leader), and the program is now in compliance. In addition, VDOT was found to have successfully implemented the Plan of Corrective Action for Metric 14 (Inspection Procedures - Post or Restrict); VDOT continues to review and post structures in a timely manner as dictated by regulation and policy. VDOT was found to be in substantial compliance of Metric 18 (Scour Critical Bridges) due to VDOT's document retention policy for scour evaluations differing from FHWA interpretation of published guidance. There were no problems identified on the current or previous review for Metric 18; however, the substantial compliance finding remains while the Improvement Plan is active. VDOT is establishing a QA/QC program for ancillary structures similar to those currently in place for bridge, large culvert, and tunnel inspections.

Inspection Program FY2022 Accomplishments: The Bridge Safety Inspection Program had a number of significant accomplishments this year. Despite continued COVID-19 pandemic-related restrictions and added safety precautions detailed in VDOT Reopening Plan, Structure & Bridge personnel completed all bridge safety inspections for FY2021 within the required intervals. The bridge safety inspection team also completed procurement of a Digital Bridge Inspection and Reporting software solution, which is currently being configured for implementation. This innovative solution will digitize data collection during bridge safety inspections, automatically generate inspection reports, and provide comprehensive workflow and tracking for bridge safety inspection and reporting operations.

4.2.2 Bridge Load Rating

A bridge load rating is a process to determine the safe vehicle loads that a bridge can safely carry on a regular basis, referred to as the inventory level; and the maximum loads that are permitted on the bridge, referred to as the operating level, by considering various loading patterns and the associated uncertainties. The load rating provides a useful tool for determining the load posting,

bridge maintenance, and permits for overweight vehicles. The bridge management system also uses load ratings to determine the priority of bridge repairs and replacements.

National Bridge Inspection Standards (NBIS) require a bridge that qualifies for the national bridge inventory and is opened to public traffic to be inspected per the frequencies noted in Table 4-4 above. The inspection records any degradation or damage which could lower load carrying capacity and recommends a new load rating analysis. VDOT analyses its bridges in accordance with its policy for bridge load rating and AASHTO's manual for bridge evaluation (MBE).

4.2.3 Overweight Permit Review

Permit vehicles are vehicles with live load configurations that exceed the dimensions or weight limitations specified in the code of Virginia. These overweight and/or oversized vehicles travel infrequently and are generally permitted for either a single trip, or for a limited number of trips following a specific route. All overweight and/or oversized vehicles require permit approval to travel within the Commonwealth of Virginia.

The Virginia Department of Motor Vehicles (DMV) has recently implemented the EZ-Haul System, a software solution which provides automated routing, and a large routable network for analyzing and issuing hauling permits. VDOT supplements this effort with a database that supports routing solutions as well as assistance with engineering analysis on bridge load ratings.

Due to system limitations, the size of the load, or the complexity of the structure, it may be necessary to conduct a detailed analysis of some permit vehicles. VDOT's Structure and Bridge Division provides engineering solutions, analysis, and recommendations regarding the hauling permits.

4.2.3.1 Special Permits

The special permits are for vehicles with less frequently encountered loads and are usually valid for a single trip, or for a limited number of trips, and are often issued with additional travel regulations. Depending on nature of the load configuration, these special vehicles may be allowed to mix with other traffic or may be required to be escorted in a manner that controls speed and/or lane position and the presence of other vehicles on the bridge. If an analysis of the requested permit reveals that bridge would be subjected to live loads that exceed the safe load capacity of the bridge(s), then VDOT will deny the permit load request on the requested route.

4.2.3.2 Routine Blanket Permits

Routine blanket permits are for vehicles making frequent trips within a specified time on designated or unrestricted routes in Virginia. Routine permits are usually valid for multiple trips over a period of time and are expected to mix with other traffic and move at normal times and speeds. The exact time of travel of vehicles operating under a routine permit is unknown, so permit analyses take a more conservative approach when assessing live load capacity of a bridge. Permit analyses also need to account for the possibility of other heavy loads simultaneously crossing the bridge.

4.3 CONSTRUCTION

Virginia's highway construction program is divided into several major component programs. The two predominant programs are known as "SMART SCALE" and "State of Good Repair". Both programs emphasize transparency and use formulas based on objective data for project selections. At the most general level, SMART SCALE projects are intended to improve congestion, safety, accessibility, land use, economic development, and the environment, while State of Good Repair (SGR) projects are limited to the repair, restoration or replacement of deficient bridges and pavements. The SGR program is now the most significant source of construction funds for poor structures in Virginia. More details on the program can be found on the <u>SGR main</u> and <u>SGR bridge</u> webpages.

The Commonwealth Transportation Board approved the SGR prioritization and fund distribution processes on February 17, 2021, with a <u>resolution</u>. There are currently 310 structures in the SGR program. The lists of SGR bridges in Virginia's Six-Year Improvement Program (SYIP) are provided in Table E-1 and Table E-2 in Appendix E.

4.4 TECHNOLOGY AND INNOVATION (TECHNIQUES & MATERIALS)

Virginia has been widely recognized as a leader in the development and successful implementation of new technologies, techniques, and materials for use in new and existing bridges. This history of innovation has been used to make Virginia's bridges more durable, safer, more resilient, and less expensive to build. There are many elements contributing to this success, but the most prominent are the two factors indicated below:

- The Virginia Transportation Research Council (VTRC): This organization works with VDOT's Structure and Bridge Division, other divisions, and the nine districts to solve problems in the most practical manner. The results are evident in all facets of VDOT's bridge program.
- Collaboration: VDOT, FHWA, Virginia's localities, industry, and many of the state's
 universities work together to perform targeted, solution-driven research. There are seven
 "Research Advisory Committees" that hold semi-annual meetings, bringing together the
 users and developers of technology to help keep the research focused and progressing.
 This cooperation keeps Virginia on the cutting edge of bridge technology.

Virginia's culture of innovation has resulted in significant improvements to its bridge program, as can be seen from the list below, which highlights some of the most notable advances to date, along with the year or decade of full implementation:

- Continuous spans for new bridges starting in the 1970s
- Latex modified concrete deck overlays placed on milled surfaces: starting in the 1970s
- Epoxy deck overlays: starting in the 1970s
- Three coat zinc-based paint: 1982
- Mechanically Stabilized Earth (MSE) walls: 1990
- High Performance Concrete in all bridge elements: 2003
- High Performance weathering steel: 2005

- Corrosion resistant reinforcement: 2009
- Jointless bridge technology for new bridges: 2011
- Virginia abutment used with tooth joints: 2012
- Self-consolidating concrete for drilled shafts: 2013
- Architectural treatment: 2013
- Virginia pier used with tooth joints: 2014
- Latex modified concrete overlays over hydromilled surfaces: 2016
- Low-shrinkage, low-cracking concrete in decks: 2016
- Engineered cementitious composites (ECC) for shear keys: 2016
- Virginia Adjacent Member Connection (VAMC) for prestressed concrete voided slabs and box beams: 2016
- Self-consolidating concrete for substructure surface repairs: 2016
- Carbon fiber prestressing strands in prestressed concrete piles: 2017
- Stainless steel prestressing strands in concrete piles: 2017
- Flexible concrete plug joints: 2017
- Engineered cementitious composites (ECC) for culvert liners: 2018*
- Very high performance concrete (VHPC) and ultra high performance concrete (UHPC):
 2018*
- MASH-compliant bridge railings and parapets: 2019
- Considerations of climate change and coastal storms: 2020
- Bridge communication lines conduit systems for different types of abutments: 2020
- Use of H-piles in corrosive environment: 2020
- Prestressed concrete piles for full integral abutment: 2020
- Use of debonded strands in prestressed concrete beams: 2020
- Design considerations for wildlife crossings: 2021
- Standards for buried approach slabs: 2021
- Hydrodemolition for patches and refacing of substructures: 2021
- New design guidelines for large culverts: 2022

The Structure and Bridge Division is currently investigating the following materials and actions, with the hope of implementing them to further improve the durability of its structures:

- Increased use of joint elimination when repairing and rehabilitating bridges
- Use of materials for large culverts that have shown good past performance with regard to durability
- Use of heat induction rollers to remove existing coatings from painted structural steel
- Lightweight concrete
- Fiber reinforced concrete
- Glass fiber reinforced polymer (GFRP), basalt fiber reinforced polymer (BFRP) and other non-metal reinforcements
- Partial depth link slabs
- Carbon-fiber reinforced polymer strands for prestressed concrete beams
- Stainless steel strands for prestressed concrete beams

^{*} The year of substantial implementation nearing full implementation

- Use of higher strength of corrosion resistant reinforcing (CRR) steel
- Underwater concreting
- Nondestructive evaluation (NDE) methods for bridge deck evaluation
- · Use of jointless bridges in a wider range of applications
- · Corrosion resistant structural steel and fasteners
- New repair and strengthening techniques for bridges and culverts
- Load ratings for special cases

A large portion of the inventory was constructed using older technology and materials and is approaching the last years of anticipated service life. Bridge service lives can be extended through planned preventative maintenance, restorative maintenance, rehabilitation, and the strategic use of better materials. Continued innovation and technological advancement help Virginia to meet this challenge.

APPENDIX A – ADDITIONAL INVENTORY INFORMATION

This appendix provides additional inventory information on structures in Virginia:

- Table A-1 through Table A-8 and Figure A-1 through Figure A-3 provide counts of various structure categories and average ages of bridges and large culverts by district and highway system
- Table A-1 and Table A-2 provide the number of structures
- Table A-3 and Table A-4 provide the number of NBI structures
- Table A-5 and Table A-6 provide the number of Non-NBI structures
- Table A-7 and Table A-8 provide the number of NBI structures on the NHS
- Figure A-1 through Figure A-3 show the average age of structures by system and district

The following are brief definitions of some of the common terms used in describing the structures in this report.

- Bridge: Any structure with a clear span opening over an obstacle that is not defined as a
 culvert. Bridges typically have deck, superstructure, and substructure components,
 although some bridge structures integrate the deck and superstructure components as in
 the case of slab/box beams, T-beams, and rigid frames.
- Culvert: Any structure that has an integral floor system that supports the sidewalls and
 provides a lined channel. Culverts are usually buried concrete or metal pipes or box
 shapes. For a culvert, there is no distinction between substructure and superstructure and
 typically there is no deck. Multiple box or pipe culverts are considered a single structure
 whenever the clear distance between openings is less than half of the smaller adjacent
 opening. Otherwise, each opening is considered a separate structure.
- NBI: Abbreviation for "National Bridge Inventory." When a structure is referred to as an NBI structure it meets the federal definition of a bridge as defined in the NBIS. Generally, NBI structures are bridges with spans greater than 20 feet and culverts that are greater than 20 feet (when measured along the roadway).
- Non-NBI: A bridge or culvert in the inventory of VDOT's Structure and Bridge Division that
 does not meet the NBI definition above. Structures in this category include large culverts
 and bridges with spans that are 20 feet or less. All non-NBI culverts have a hydraulic
 opening equal to or greater than 36 square feet.
- Large Culvert: A culvert that either meets the definition of a Non-NBI structure or a culvert that meets the definition of an NBI structure as defined in the NBIS.

Table A-1- Total Number of Bridges by District

District	Number of Bridges						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	135	554	1,737	2,426			
2 Salem	112	489	1,415	2,016			
3 Lynchburg	0	367	835	1,202			
4 Richmond	281	489	787	1,557			
5 Hampton Roads	345	348	531	1,224			
6 Fredericksburg	25	143	238	406			
7 Culpeper	70	261	691	1,022			
8 Staunton	206	505	1,402	2,113			
9 NOVA	273	345	606	1,224			
Statewide	1,447	3,501	8,242	13,190			

Table A-2- Total Number of Large Culverts by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	80	399	473	952			
2 Salem	98	337	626	1,061			
3 Lynchburg	0	294	588	882			
4 Richmond	238	294	539	1,071			
5 Hampton Roads	120	115	278	513			
6 Fredericksburg	55	111	264	430			
7 Culpeper	50	234	406	690			
8 Staunton	225	322	829	1,376			
9 NOVA	120	216	768	1,104			
Statewide	986	2,322	4,771	8,079			

Table A-3- Total Number of NBI Bridges by District

District	Number of Bridges						
DISTICT	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	135	426	1,170	1,731			
2 Salem	112	374	973	1,459			
3 Lynchburg	0	325	689	1,014			
4 Richmond	277	458	727	1,462			
5 Hampton Roads	344	340	502	1,186			
6 Fredericksburg	25	135	216	376			
7 Culpeper	70	172	533	775			
8 Staunton	206	372	877	1,455			
9 NOVA	273	309	495	1,077			
Statewide	1,442	2,911	6,182	10,535			

Table A-4- Total Number of NBI Large Culverts by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	28	101	144	273			
2 Salem	27	84	267	378			
3 Lynchburg	0	86	236	322			
4 Richmond	86	121	321	528			
5 Hampton Roads	39	40	171	250			
6 Fredericksburg	21	42	114	177			
7 Culpeper	14	73	185	272			
8 Staunton	46	84	291	421			
9 NOVA	27	102	395	524			
Statewide	288	733	2,124	3,145			

Table A-5- Total Number of Non-NBI Bridges by District

District	Number of Bridges						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	0	128	567	695			
2 Salem	0	115	442	557			
3 Lynchburg	0	42	146	188			
4 Richmond	4	31	60	95			
5 Hampton Roads	1	8	29	38			
6 Fredericksburg	0	8	22	30			
7 Culpeper	0	89	158	247			
8 Staunton	0	133	525	658			
9 NOVA	0	36	111	147			
Statewide	5	590 2,060		2,655			

Table A-6- Total Number of Non-NBI Large Culverts by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	52	298	329	679			
2 Salem	71	253	359	683			
3 Lynchburg	0	208	352	560			
4 Richmond	152	173	218	543			
5 Hampton Roads	81	75	107	263			
6 Fredericksburg	34	69	150	253			
7 Culpeper	36	161	221	418			
8 Staunton	179	238	538	955			
9 NOVA	93	114	373	580			
Statewide	698	1,589	2,647	4,934			

Table A-7- Total Number of NBI Bridges on NHS by District

District	Number of Bridges						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	135	137	2	274			
2 Salem	110	194	4	308			
3 Lynchburg	0	172	1	173			
4 Richmond	276	281	20	577			
5 Hampton Roads	342	211	76	629			
6 Fredericksburg	25	84	6	115			
7 Culpeper	70	57	2	129			
8 Staunton	204	131	1	336			
9 NOVA	269	259	30	558			
Statewide	1,431	1,526	142	3,099			

Table A-8- Total Number of NBI Large Culverts on NHS by District

District	Number of Large Culverts						
District	Interstate	Primary	Secondary & Urban	Total			
1 Bristol	28	38	0	66			
2 Salem	26	36	0	62			
3 Lynchburg	0	45	0	45			
4 Richmond	86	80	4	170			
5 Hampton Roads	36	27	6	69			
6 Fredericksburg	21	27	1	49			
7 Culpeper	13	38	2	53			
8 Staunton	45	22	1	68			
9 NOVA	27	71	3	101			
Statewide	282	384	17	683			

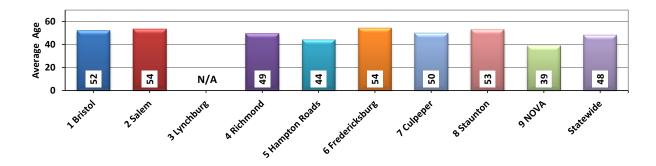
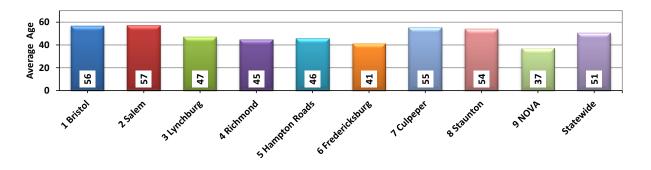
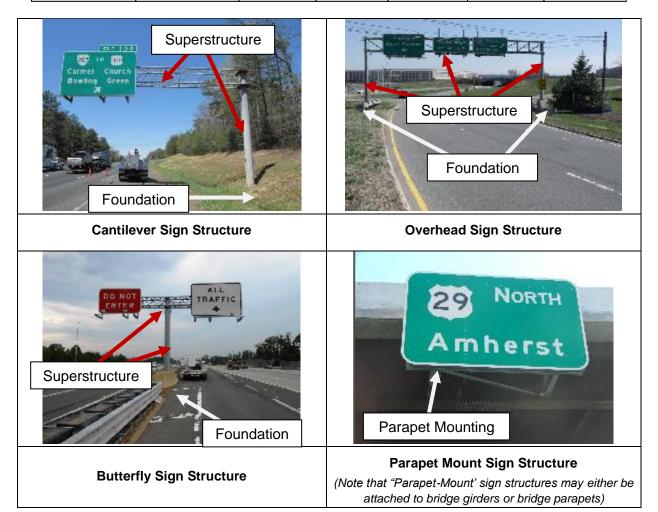


Figure A-1- Average Age of Interstate Structures by District

Figure A-2- Average Age of Primary Structures by District




Figure A-3 - Average Age of Secondary and Urban Structures by District

APPENDIX B – ADDITIONAL INVENTORY INFORMATION ON ANCILLARY STRUCTURES

Table B-1 through Table B-4 provide information for the subcategories of each type of ancillary structure. Typical examples of each type of ancillary structure are also shown.

Table B-1- Number of Sign Structures by District

		Percentage				
District	Cantilever	Overhead	Parapet Mount	Butterfly	Total	of Total Inventory
1 Bristol	25	37	-	10	72	2.0%
2 Salem	94	86	-	93	273	7.5%
3 Lynchburg	6	60	-	5	71	2.0%
4 Richmond	378	331	71	1	781	21.5%
5 Hampton Roads	381	444	27	79	931	25.6%
6 Fredericksburg	58	42	-	5	105	2.9%
7 Culpeper	9	21	10	5	45	1.2%
8 Staunton	18	50	12	15	95	2.6%
9 Northern Virginia	625	545	7	89	1,266	34.8%
Total	1,594	1,616	127	302	3,639	100.0%

Table B-2- Number of Luminaire Structures by District

	Structure Type	Percentage	
District	Luminaire	of Total Inventory	
1 Bristol	463	2.4%	
2 Salem	991	5.1%	
3 Lynchburg	344	1.8%	
4 Richmond	1,917	10.0%	
5 Hampton Roads	6,795	35.3%	
6 Fredericksburg	737	3.8%	
7 Culpeper	158	0.8%	
8 Staunton	281	1.5%	
9 Northern Virginia	7,579	39.3%	
Total	19,265	100.0%	

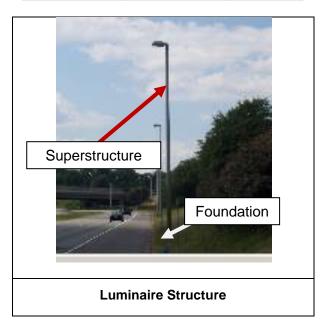
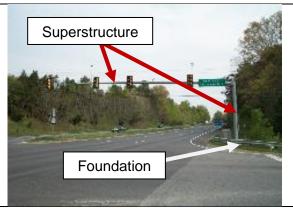
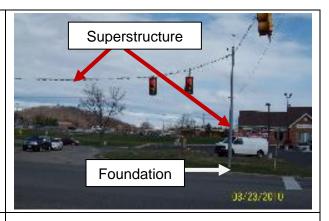
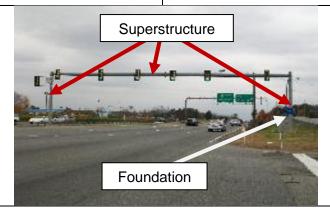
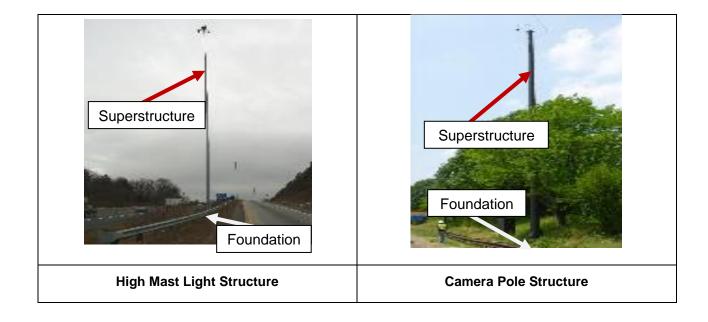




Table B-3- Number of Traffic Signal Structures by District


		Str	ucture Type			Percentage
District	Overhead Span	Mast Arm	Span Wire	Other	Total	of Total Inventory
1 Bristol	•	251	12	ı	263	2.7%
2 Salem	•	522	8	2	532	5.5%
3 Lynchburg	•	275	2	ı	277	2.9%
4 Richmond	•	1,306	188	ı	1,494	15.5%
5 Hampton Roads	•	525	18	ı	543	5.6%
6 Fredericksburg	1	814	8	ı	823	8.5%
7 Culpeper	•	321	-	ı	321	3.3%
8 Staunton		510	19	ı	529	5.5%
9 Northern Virginia	2	4,271	601	2	4,876	50.5%
Total	3	8,795	856	4	9,658	100.0%

Cantilevered Mast Arm Traffic Signal Structure


Span Wire Traffic Signal Structure

Overhead Span Traffic Signal Structure

Table B-4- Number of High Mast Light and Camera Pole Structures by District

	Stru	ucture Type		Percentage of
District	High Mast Light	Camera Poles	Total	Total Inventory
1 Bristol	76	1	77	5.2%
2 Salem	13	3	16	1.1%
3 Lynchburg	ı	-	١	0.0%
4 Richmond	108	50	158	10.6%
5 Hampton Roads	180	287	467	31.5%
6 Fredericksburg	1	60	61	4.1%
7 Culpeper	-	12	12	0.8%
8 Staunton	21	62	83	5.6%
9 Northern Virginia	303	307	610	41.1%
Total	702	782	1,484	100.0%

APPENDIX C – ADDITIONAL INVENTORY AND CONDITION INFORMATION FOR STRUCTURES

In Table C-1 the "Min GCR" is the minimum GCR among the three major components that define a bridge (deck, superstructure, and substructure). The "Min GCR" is based on all four of the major components and thus includes the large culvert component.

Table C-1- Number of Structure Components in Each General Condition Rating by System

Highway	Component		•		G	CR			•	Ava CCB
System	Component	9	8	7	6	5	4	3	0 - 2	Avg. GCR
	Deck	12	40	513	680	195	5	0	0	6.29
	Superstructure	13	67	372	581	403	11	0	0	6.08
Interetate	Substructure	10	41	329	634	431	2	0	0	6.00
Interstate	Bridge Min GCR	10	25	226	558	614	14	0	0	5.77
	Large Culvert	1	12	174	626	171	2	0	0	6.03
	Min GCR	11	37	400	1,184	785	16	0	0	5.87
	Deck	15	114	1,301	1,315	687	43	1	0	6.23
	Superstructure	22	312	1,064	1,205	812	85	0	1	6.22
Primary	Substructure	11	107	1,187	1,435	709	52	0	0	6.18
Filliary	Bridge Min GCR	9	50	799	1,361	1,158	123	0	1	5.86
	Large Culvert	10	56	625	1,228	382	20	1	0	6.15
	Min GCR	19	106	1,423	2,589	1,541	143	1	1	5.98
	Deck	163	1,342	3,416	2,149	952	98	4	1	6.67
	Superstructure	169	1,606	2,830	1,976	1,379	266	12	3	6.56
Secondary	Substructure	44	582	3,041	3,000	1,433	136	5	1	6.32
& Urban	Bridge Min GCR	40	352	2,431	2,864	2,166	371	15	3	6.03
	Large Culvert	70	533	1,815	1,594	630	125	4	0	6.46
	Min GCR	110	885	4,246	4,458	2,796	496	19	3	6.19
	Deck	190	1,496	5,230	4,144	1,834	146	5	1	6.51
	Superstructure	204	1,985	4,266	3,762	2,594	362	12	4	6.42
All	Substructure	65	730	4,557	5,069	2,573	190	5	1	6.25
All	Bridge Min GCR	59	427	3,456	4,783	3,938	508	15	4	5.96
	Large Culvert	81	601	2,614	3,448	1,183	147	5	0	6.32
	Min GCR	140	1,028	6,069	8,231	5,122	655	20	4	6.10

Note: A small number of bridges have particular configurations so that they don't have all the major components. Accordingly, there is a small difference in the total number of deck, superstructure, and substructure components.

APPENDIX D – GENERAL CONDITION RATINGS (BRIDGES AND LARGE CULVERTS)

General Condition Ratings (GCRs): In accordance with the requirements of the National Bridge Inventory (NBI), General Condition Ratings are assigned by the structure inspection team after each bridge inspection. These ratings are included in each inspection report to describe the current physical state of the bridge or large culvert. Evaluation is based on the physical condition of the structure at the time of inspection. Separate GCR values are assigned to the deck, superstructure, and substructure components of a bridge. A large culvert receives a single GCR. The GCRs are assigned based on a numerical grading system that ranges from 0 (failed condition) to 9 (excellent condition). The table below describes the general condition ratings. The figures in the following pages provide illustrative examples of these ratings.

0	1	2	3	4	5	6	7	8	9
Failed	Imminent Failure	Critical	Serious	Poor	Fair	Satisfactory	Good	Very Good	Excellent
POOR					FAIR		GOO	D	

A structure is defined as poor if one or more of its major components (deck, superstructure, substructure, or large culvert) has a General Condition Rating (GCR) less than or equal to four (4).

Code Description

- N NOT APPLICABLE
- 9 **EXCELLENT CONDITION**
- 8 **VERY GOOD CONDITION**: No problems noted.
- 7 **GOOD CONDITION**: Some minor problems.
- 6 **SATISFACTORY CONDITION**: Structural components show some minor deterioration.
- 5 **FAIR CONDITION**: All primary structural elements are sound but may have some minor section loss, cracking, spalling or scour
- 4 **POOR CONDITION**: Advanced section loss, deterioration, spalling or scour.
- 3 **SERIOUS CONDITION**: Loss of section, deterioration, spalling or scour have seriously affected primary structural components. Local failures are possible. Fatigue cracks in steel or shear cracks in concrete may be present.
- 2 **CRITICAL CONDITION**: Advanced deterioration of primary structural elements. Fatigue cracks in steel or shear cracks in concrete may be present or scour may have removed substructure support. Unless closely monitored it may be necessary to close the bridge until corrective action is taken.
- "IMMINENT" FAILURE CONDITION: Major deterioration or section loss present in critical structural components or obvious vertical or horizontal movement affecting structure stability. Bridge is closed to traffic but corrective action may put back in light service.
- 0 **FAILED CONDITION**: Out of service beyond corrective action.

Typical Ex	camples of General Condition Ratings for Deck
GCR	Example
4 or less – Poor Condition	
	Bridge Deck with advanced deterioration
5 – Fair Condition (At Risk of Becoming Poor Condition)	09/24/2009 Bridge Deck with cracking and some patching
6 – Satisfactory Condition	Bridge Deck with minor to no deterioration

Typical Examples of General Condition Ratings for Superstructure Example **GCR** Steel Concrete 4 or less -Poor Condition Bridge Superstructure with advanced Concrete Beam with major spalling (bottom of beam viewed from below) section loss 5 - Fair Condition (At Risk of Becoming Poor Condition) Spall on end of beam with exposed reinforcing Bridge Superstructure with minor to with minor section loss moderate section loss 6 -Satisfactory Condition Rust scale and minor section loss Concrete Beam with localized spalling

Typical Examp	oles of General Condition Ratings for Substructure
GCR	Example
4 or less – Poor Condition	
	Bridge Substructure with advanced deterioration
5 – Fair Condition (At Risk of Becoming Poor Condition)	Bridge Substructure with moderate cracks and deterioration
6 – Satisfactory Condition	Bridge Substructure with minor cracks

	Typical Examples of General Condition	on Ratings for Large Culverts
GCR	Ex	cample
GCR	Steel	Concrete
4 or less - Poor Condition	Culvert with advanced section loss	Portion of center wall of box culvert missing
5 – Fair Condition (At Risk of Becoming Poor Condition)	Culvert panels separated	02/12/2008 Culvert moderate deterioration
6 – Satisfactory Condition	Light rust along flow line	Culvert with minor cracks

APPENDIX E – STATE OF GOOD REPAIR STRUCTURES IN VIRGINIA'S APPROVED SIX YEAR IMPROVEMENT PLAN

The Virginia General Assembly authorized the State of Good Repair (SGR) program during the 2015 session. The program was later incorporated into the Code of Virginia, authorizing the Commonwealth Transportation Board to use funds for reconstruction and replacement of VDOT and locality-owned structures in poor condition. Structures include bridges and large culverts. The SGR program is intended to fund structure work that provides long-term solutions exceeding routine maintenance, but should not be viewed solely as a structure replacement program. In general, project scopes are established to rehabilitate, reconstruct, or replace elements in poor condition or on the cusp of being in poor condition in the most practical and cost-effective manner while including measures to mitigate future deterioration. More details on the program can be found on the SGR main and SGR bridge webpages.

Table E-1 and Table E-2 provide lists of all active SGR structure projects and funding in the Commonwealth's official Six-Year Improvement Program (SYIP) for fiscal years (FY) 2024 to 2029 as of July 1, 2022.

Table E-1- SGR Structures in Virginia's Approved FY2024 to FY2029 SYIP: VDOT-Owned Structures

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
104898	10697	23	NORFORK SOUTHERN RAILWAY	Primary	Bristol	FY17	\$ 2,205,519	\$ 3,865,120
106175	16511	687	SR-63	Secondary	Bristol	FY17	\$ 1,201,560	\$ 4,495,000
107117	17470	81	MULBERRY LANE (RT 686)	Interstate	Bristol	FY17	\$ 14,200,000	\$ 15,264,757
109504	18461	19	NS RWY & WRIGHTS VAL CRK	Primary	Bristol	FY17	\$ 1,496,623	\$ 3,513,039
104936	19596	81	REED CREEK	Interstate	Bristol	FY17	\$ 11,750,000	\$ 12,618,417
104936	19597	81	REED CREEK	Interstate	Bristol	FY17	\$ 11,750,000	\$ 12,618,417
111265	17478	81	RTE 11, NSRR, MFH RIVER	Interstate	Bristol	FY18	\$ 12,499,999	\$ 16,239,695
113890	5792	63	RUSSELL FORK RIVER	Primary	Bristol	FY19	\$ 3,828,000	\$ 6,120,016
113848	18469	61	COVE CREEK	Primary	Bristol	FY19	\$ 750,000	\$ 750,000
113759	19565	77	COVE CREEK	Interstate	Bristol	FY19	\$ 16,585,355	\$ 17,333,373
113982	22453	58	GUEST RV & NS RAILWAY	Primary	Bristol	FY19	\$ 3,301,265	\$ 3,301,265
101374	18657	717	BLUESTONE RIVER	Secondary	Bristol	FY21	\$ 949,905	\$ 1,149,905
117111	19706	643	CRIPPLE CREEK	Secondary	Bristol	FY21	\$ 2,512,168	\$ 2,512,168
104828	19162	725	LAUREL CREEK	Secondary	Bristol	FY21	\$ 1,881,479	\$ 2,328,726
105960	10696	23	NORFORK&SOUTHERN RAILWAY	Primary	Bristol	FY21	\$ 3,741,771	\$ 3,941,771
117109	19295	58	NS RAILWAY	Primary	Bristol	FY21	\$ 10,724,533	\$ 10,724,533
117110	3017	77	RTE 606	Interstate	Bristol	FY21	\$ 15,931,700	\$ 15,931,700
104902	19734	664	REED CREEK	Secondary	Bristol	FY21	\$ 93,965	\$ 1,733,392
104994	19212	1203	BEAVER DAM CREEK	Secondary	Bristol	FY21	\$ 2,419,523	\$ 3,019,626
86601	10711	58	Powell River	Primary	Bristol	FY21	\$ 6,842,371	\$ 8,787,141
118662	17656	660	NS RAILWAY	Secondary	Bristol	FY22	\$ 14,924,055	\$ 14,924,055
117112	18686	806	COAL CREEK	Secondary	Bristol	FY22	\$ 7,393,527	\$ 7,393,527
121139	17426	81	M. FORK HOLSTON RIVER	Interstate	Bristol	FY23	\$ 15,233,343	\$ 15,233,343
121139	17427	81	M. FORK HOLSTON RIVER	Interstate	Bristol	FY23	\$ 15,233,343	\$ 15,233,343
121210	8730	58	CABIN CREEK	Primary	Bristol	FY23	\$ 4,706,119	\$ 4,706,119
121141	19743	671	HARRIS BRANCH	Secondary	Bristol	FY23	\$ 3,910,949	\$ 3,910,949
121137	16438	634	PINE CREEK	Secondary	Bristol	FY23	\$ 4,240,645	\$ 4,240,645

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
121140	19677	619	CRIPPLE CREEK	Secondary	Bristol	FY23	\$ 10,757,068	\$ 10,757,068
121138	16699	624	N FORK CLINCH RIVER	Secondary	Bristol	FY23	\$ 3,579,843	\$ 3,579,843
121212	16806	669	BIG MOCCASIN CREEK	Secondary	Bristol	FY23	\$ 4,563,185	\$ 4,563,185
62650	2718	634	Roanoke River	Secondary	Salem	FY17	\$ 7,138,904	\$ 12,982,098
115473	12363	813	Roanoke River @ Kumis	Secondary	Salem	FY17	\$ 2,411,233	\$ 2,411,233
101009	12363	813	Roanoke River @ Kumis	Secondary	Salem	FY17	\$ 2,411,233	\$ 2,411,233
93074	22513	81	ROUTE 8	Interstate	Salem	FY17	\$ 15,384,100	\$ 17,007,201
93074	22515	81	ROUTE 8	Interstate	Salem	FY17	\$ 15,384,100	\$ 17,007,201
110620	15105	760	ROANOKE RIVER	Secondary	Salem	FY18	\$ 1,941,495	\$ 1,941,495
104184	2843	715	NSRailway	Secondary	Salem	FY18	\$ 3,091,489	\$ 3,800,311
110624	12118	11	N&W RAILWAY	Primary	Salem	FY18	\$ 2,626,951	\$ 2,626,951
101001	13191	8	Mayo River	Primary	Salem	FY18	\$ 3,756,340	\$ 3,756,340
101004	4544	58	Crooked Creek	Primary	Salem	FY18	\$ 3,044,927	\$ 3,684,218
110599	10063	220	Reed Creek	Primary	Salem	FY18	\$ 5,885,000	\$ 6,350,000
104187	2708	622	NS Railway	Secondary	Salem	FY19	\$ 1,625,597	\$ 4,459,470
112877	5471	311	Meadow Creek	Primary	Salem	FY19	\$ 2,370,594	\$ 2,370,594
112878	13221	58	Dan River	Primary	Salem	FY19	\$ 6,550,000	\$ 6,550,000
117018	24893	1460	Br of Beaver Dam Ck	Secondary	Salem	FY21	\$ 1,389,918	\$ 1,389,918
117016	4762	764	Greasy Creek	Secondary	Salem	FY21	\$ 2,103,329	\$ 2,103,329
118341	3486	674	TINKER CREEK	Secondary	Salem	FY21	\$ 1,197,509	\$ 1,197,509
117020	12213	615	Brush Creek	Secondary	Salem	FY21	\$ 2,037,535	\$ 2,037,535
117017	2781	666	Elk Creek	Secondary	Salem	FY21	\$ 6,282,608	\$ 6,282,608
117019	7916	705	Pigg River	Secondary	Salem	FY21	\$ 8,482,725	\$ 8,482,725
104179	2685	608	NS Railway	Secondary	Salem	FY21	\$ 4,439,974	\$ 5,578,551
117009	4780	881	Little Reed Island Cr #2	Secondary	Salem	FY22	\$ 11,305,262	\$ 11,305,262
117011	5556	692	CRAIG CREEK	Secondary	Salem	FY22	\$ 11,022,319	\$ 11,022,319
117008	8516	778	Sinking Creek	Secondary	Salem	FY22	\$ 10,341,446	\$ 10,341,446
117012	12292	663	Crab Creek	Secondary	Salem	FY23	\$ 9,731,817	\$ 9,731,817
101043	1524	681	Williams Run	Secondary	Lynchburg	FY17	\$ 1,032,027	\$ 1,032,027
104944	4159	29	Staunton River / NS Rwy	Primary	Lynchburg	FY17	\$ 10,766,201	\$ 25,198,388
5542	4220	622	Flat Creek	Secondary	Lynchburg	FY18	\$ 736,867	\$ 11,644,350
111282	5741	621	Appomattox River	Secondary	Lynchburg	FY18	\$ 2,444,177	\$ 3,005,816
111279	20579	29	NS Railway	Primary	Lynchburg	FY18	\$ 7,019,105	\$ 7,019,105
111280	4851	92	Staunton River	Primary	Lynchburg	FY18	\$ 13,978,243	\$ 25,406,709
112865	12538	653	NS Railway	Secondary	Lynchburg	FY19	\$ 5,297,039	\$ 5,349,361
119384	20547	128	Route 29 Business	Primary	Lynchburg	FY21	\$ 35,583,760	\$ 64,657,203
-26504	13897	360	Grade Crossing	Primary	Lynchburg	FY23	\$ 11,131,186	\$ 11,131,186
-25139	13473	40	Pigg River	Primary	Lynchburg	FY23	\$ 23,354,078	\$ 23,354,078
104953	1224	360	NS RAILWAY & RTE 360BUS	Primary	Richmond	FY17	\$ 4,020,127	\$ 4,020,127
101241	3678	630	WAQUA CREEK	Secondary	Richmond	FY17	\$ 120,078	\$ 1,252,778
104955	11943	92	BUTCHERS CREEK	Primary	Richmond	FY17	\$ 2,427,262	\$ 2,427,262
93087	21552	195	RTE 76; CSX RR & RAMP S	Interstate	Richmond	FY17	\$ 14,697,630	\$ 14,697,630
111277	3572	46	U.S. 58 BYPASS	Primary	Richmond	FY18	\$ 1,796,971	\$ 1,952,759
111289	9412	156	RTE 360	Primary	Richmond	FY18	\$ 2,135,576	\$ 2,135,576
111275	6104	703	CSX TRANSP RIGHT OF WAY	Secondary	Richmond	FY18	\$ 2,500,000	\$ 2,500,000
111287	9378	30	NORTH ANNA RIVER	Primary	Richmond	FY18	\$ 2,942,618	\$ 2,942,618
111299	5280	641	CSX TRNS & USDGSC SERVIC	Secondary	Richmond	FY18	\$ 3,500,000	\$ 6,000,000
111290	9612	7667	ROUTE 0064	Secondary	Richmond	FY18	\$ 4,000,000	\$ 4,500,000
111291	9875	157	I-64 & RAMPS GASKIN RD	Primary	Richmond	FY18	\$ 4,000,001	\$ 4,000,001
111303	21441	64	ROUTE 95	Interstate	Richmond	FY18	\$ 4,553,339	\$ 4,553,339

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
111298	12826	460	U.S. 460 (BYPASS)	Primary	Richmond	FY18	\$ 3,993,541	\$ 3,993,541
111297	9536	657	I-95	Secondary	Richmond	FY18	\$ 5,875,617	\$ 6,037,486
111294	21287	64	ROUTE I-95	Interstate	Richmond	FY18	\$ 8,629,387	\$ 8,629,387
110424	1226	360	NS RAILWAY & RTE 360BUS	Primary	Richmond	FY18	\$ 5,954,235	\$ 5,954,235
111300	21282	0	ROUTE I-95 (I-64)	Urban	Richmond	FY18	\$ 10,746,431	\$ 11,146,431
111302	5058	95	RTE 608 (REYMET RD)	Interstate	Richmond	FY18	\$ 6,693,178	\$ 6,693,178
113389	3562	1	CSX TRANSP RIGHT OF WAY	Primary	Richmond	FY19	\$ 3,635,836	\$ 3,635,836
113374	9880	195	RTE 197 & CSX TRANSP. RR	Interstate	Richmond	FY19	\$ 5,800,000	\$ 6,000,000
113387	12630	33	RTE I 64 @ BOTTOMS BRIDG	Primary	Richmond	FY19	\$ 9,100,000	\$ 9,500,000
113390	21087	0	INTERSTATE-85	Urban	Richmond	FY19	\$ 4,000,000	\$ 4,000,000
113386	21137	95	RTES 301 & EB 460	Interstate	Richmond	FY19	\$ 5,246,122	\$ 5,246,122
113388	21284	0	ROUTE I-95	Urban	Richmond	FY19	\$ 9,311,141	\$ 9,311,141
113375	21569	250	I-95	Primary	Richmond	FY19	\$ 9,556,190	\$ 9,556,190
118316	21310	7542	ROUTE 195 & CSX RR	Urban	Richmond	FY21	\$ 11,655,719	\$ 11,655,719
118303	21519	147	RTE. 195 & CSX RAILROAD	Primary	Richmond	FY21	\$ 11,745,468	\$ 11,745,468
118484	21289	0	I-95; LOOP-J & RAMP-B	Urban	Richmond	FY21	\$ 11,117,518	\$ 11,117,518
118301	11884	58	BIG BUFFALO CREEK	Primary	Richmond	FY21	\$ 17,536,497	\$ 17,536,497
109988	9578	715	NEW FOUND RIVER	Secondary	Richmond	FY21	\$ 1,184,117	\$ 1,705,081
118300	9745	33	I-64	Primary	Richmond	FY22	\$ 50,298,645	\$ 50,298,645
-26692	3552	1	SHINING CREEK	Primary	Richmond	FY23	\$ 10,467,323	\$ 10,467,323
-26701	11911	85	ROANOKE RIVER	Interstate	Richmond	FY23	\$ 27,509,528	\$ 27,509,528
-26697	5341	746	JOHNSON CREEK	Secondary	Richmond	FY23	\$ 5,794,950	\$ 5,794,950
-26694	5272	637	FALLING CREEK	Secondary	Richmond	FY23	\$ 9,902,088	\$ 9,902,088
121529	23260	724	JOHNSON CREEK	Secondary	Richmond	FY23	\$ 6,386,257	\$ 6,386,257
-26700	11878	58	COLEMANS CREEK	Primary	Richmond	FY23	\$ 7,213,604	\$ 7,213,604
121538	6064	639	NAMOZINE CREEK	Secondary	Richmond	FY23	\$ 6,463,383	\$ 6,463,383
-26696	5328	678	BRANCH OF FALLING CREEK	Secondary	Richmond	FY23	\$ 10,515,178	\$ 10,515,178
121542	12704	106	RTES I 64 & 33	Primary	Richmond	FY23	\$ 31,247,230	\$ 31,247,230
-26693	4809	607	WEST RUN	Secondary	Richmond	FY23	\$ 6,324,904	\$ 6,324,904
98813	17755	189	Blackwater River	Primary	Hampton Roads	FY17	\$ 18,132,447	\$ 19,477,554
93078	17813	635	NS Railroad	Secondary	Hampton Roads	FY17	\$ 2,861,909	\$ 4,321,480
93077	20727	173	IS 64 & CSX Railroad	Primary	Hampton Roads	FY17	\$ 1,240,020	\$ 34,710,916
111339	10445	692	Champion Swamp	Secondary	Hampton Roads	FY18	\$ 1,306,648	\$ 2,215,066
111338	22615	10	Cypress Creek	Primary	Hampton Roads	FY18	\$ 1,600,000	\$ 5,000,000
111342	18185	40	Otterdam Swamp	Primary	Hampton Roads	FY18	\$ 1,700,223	\$ 5,042,283
108976	17865	671	Nottoway River	Secondary	Hampton Roads	FY18	\$ 6,585,921	\$ 7,444,407
113030	356	178	Occohannock Creek	Primary	Hampton Roads	FY19	\$ 6,219,960	\$ 6,219,960
113026	10417	638	Burnt Mill Swamp	Secondary	Hampton Roads	FY19	\$ 1,379,007	\$ 1,379,007
113029	10424	644	Pope Swamp	Secondary	Hampton Roads	FY19	\$ 4,118,288	\$ 4,118,288
113028	10441	683	Stallings Creek	Secondary	Hampton Roads	FY19	\$ 3,800,000	\$ 3,800,000
113027	10442	690	Ennis Pond	Secondary	Hampton Roads	FY19	\$ 2,195,852	\$ 2,195,852
113031	17901	743	Tarrara Creek	Secondary	Hampton Roads	FY19	\$ 3,250,000	\$ 3,250,000
113032	24320	707	PITTS CREEK	Secondary	Hampton Roads	FY19	\$ 3,456,299	\$ 3,456,299
115008*	20353	64	Hampton Roads	Interstate	Hampton Roads	FY20	\$ -	\$ 84,846,267
115009*	20353	64	Hampton Roads	Interstate	Hampton Roads	FY20	\$ -	\$ 15,455,257
115010*	20353	64	Hampton Roads	Interstate	Hampton Roads	FY20	\$ -	\$ 5,502,645
115011*	20353	64	Hampton Roads	Interstate	Hampton Roads	FY20	\$ 2,199,043	\$ 3,064,721
-26730	20223	58	IS 95	Primary	Hampton Roads	FY23	\$ 37,254,088	\$ 37,254,088
110111	4398	207	MATTAPONI RIVER	Primary	Fredericksburg	FY17	\$ 7,474,802	\$ 7,474,802
110109	4407	207	POLECAT CREEK	Primary	Fredericksburg	FY17	\$ 214,286	\$ 351,407

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
110088	6153	620	PISCATAWAY CREEK	Secondary	Fredericksburg	FY17	\$ 1,787,405	\$ 1,787,405
110109	8548	641	NORTHWEST BR SARAH CREEK	Secondary	Fredericksburg	FY17	\$ 214,286	\$ 351,407
110097	10588	14	PORPOTANK CREEK	Primary	Fredericksburg	FY17	\$ 1,917,207	\$ 3,119,207
110109	10645	360	MONCUIN CREEK	Primary	Fredericksburg	FY17	\$ 214,286	\$ 351,407
110110	12086	17	DRAGON RUN	Primary	Fredericksburg	FY17	\$ 4,128,836	\$ 4,128,836
110109	14782	360	RAPPAHANNOCK R RTE-1013	Primary	Fredericksburg	FY17	\$ 214,286	\$ 351,407
110109	17929	17	CSX RAILROAD	Primary	Fredericksburg	FY17	\$ 214,286	\$ 351,407
100829	17984	606	ROUTE I-95	Secondary	Fredericksburg	FY17	\$ 4,424,138	\$ 10,687,509
81501	18034	658	NORTH ANNA RIVER	Secondary	Fredericksburg	FY17	\$ 2,101,556	\$ 2,834,580
111406	18057	1	CHOPAWAMSIC CREEK	Primary	Fredericksburg	FY17	\$ 6,669,503	\$ 8,669,503
105535**	18073	3	RAPPAHANNOCK RIVER	Primary	Fredericksburg	FY17	\$ 18,623,759	\$ 20,819,472
110109	18081	17	DEEP RUN	Primary	Fredericksburg	FY17	\$ 214,286	\$ 351,407
110109	18082	17	DEEP RUN	Primary	Fredericksburg	FY17	\$ 214,286	\$ 351,407
110822**	18073	3	RAPPAHANNOCK RIVER	Primary	Fredericksburg	FY17	\$ 3,510,496	\$ 3,559,334
110595	18083	95	ROUTE 17	Interstate	Fredericksburg	FY18	\$ 12,404,431	\$ 13,333,629
110901	10610	617	EXOL SWAMP	Secondary	Fredericksburg	FY18	\$ 1,987,372	\$ 1,987,372
111390	11835	14	NORTH END BRANCH	Primary	Fredericksburg	FY18	\$ 2,558,165	\$ 3,245,000
113852	4471	638	SOUTH RIVER	Secondary	Fredericksburg	FY19	\$ 3,450,000	\$ 4,100,000
113853	4485	652	POLECAT CREEK	Secondary	Fredericksburg	FY19	\$ 2,370,496	\$ 2,500,000
111392	4505	743	SOUTH RIVER	Secondary	Fredericksburg	FY19	\$ 1,753,580	\$ 1,886,454
113850	6145	607	DRAGON RUN	Secondary	Fredericksburg	FY19	\$ 3,000,000	\$ 3,000,000
111391	11834	3	BURKE MILL STREAM	Primary	Fredericksburg	FY19	\$ 4,500,000	\$ 5,520,000
102936	18053	1	POTOMAC CREEK	Primary	Fredericksburg	FY19	\$ 5,902,323	\$ 7,007,126
113839	18067	3	CSX RAILROAD	Primary	Fredericksburg	FY19	\$ 2,185,101	\$ 2,185,101
113851	18157	644	AQUIA CREEK	Secondary	Fredericksburg	FY19	\$ 5,779,500	\$ 6,479,500
113807	23928	1470	STREAM	Secondary	Fredericksburg	FY21	\$ 771,969	\$ 1,312,969
118287	10694	695	OYSTER CREEK	Secondary	Fredericksburg	FY21	\$ 7,603,794	\$ 7,603,794
118289	4400	207	MATTAPONI RIVER	Primary	Fredericksburg	FY21	\$ 7,818,804	\$ 7,818,804
118288	12085	17	DRAGON RUN	Primary	Fredericksburg	FY21	\$ 12,559,699	\$ 12,559,699
107140	17926	17	ROUTE 1-95	Primary		FY21	\$ 2,298,120	\$ 21,870,820
119099	4409	301	N FORK PEUMONSEND CREEK	· ·	Fredericksburg	FY22		\$ 300,050
119099	18141	626	CSX RAILROAD	Primary	Fredericksburg	FY22	\$ 300,050	\$ 1,190,856
119100				Secondary Secondary	Fredericksburg	FY22	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 	
121686	18145 18062	628	CSX RAILROAD RAPPAHANNOCK RIVER		Fredericksburg			\$ 1,515,636
121539	19244	1 658		Primary Secondary	Fredericksburg Fredericksburg	FY23 FY23	\$ 51,211,333	\$ 51,211,333 \$ 2,723,936
			MONROE CREEK	Primary	ŭ		\$ 2,723,936	
121573	10584	14	GARNETT'S CREEK	· ·	Fredericksburg	FY23	\$ 1,138,204	
121572	10608	614	EXOL SWAMP	Secondary	Fredericksburg	FY23	\$ 4,634,357	\$ 4,634,357
110001	589	240	LICKINGHOLE CREEK	Primary	Culpeper	FY17	\$ 2,021,206	\$ 2,331,206
110000	709	641	MARSH RUN	Secondary	Culpeper	FY17	\$ 700,000	\$ 1,600,000
109600	724	667	PINEY CREEK	Secondary	Culpeper	FY17	\$ 1,723,500	\$ 1,923,500
111378	792	708	NORTH FORK HARDWARE RVR	Secondary	Culpeper	FY17	\$ 5,100,000	\$ 5,100,000
109601	814	726	TOTIER CREEK	Secondary	Culpeper	FY17	\$ 2,300,755	\$ 2,300,755
109599	11553	701	Little River	Secondary	Culpeper	FY17	\$ 2,215,000	\$ 2,215,000
111421	11515	647	South Anna River	Secondary	Culpeper	FY18	\$ 610,539	\$ 1,463,881
111776	638	601	ROUTE 29 & 250 BYPASS	Secondary	Culpeper	FY18	\$ 1,858,026	\$ 3,038,026
111777	7324	647	East Branch Thumb Run	Secondary	Culpeper	FY18	\$ 1,664,960	\$ 2,294,960
113504	9007	638	South River	Secondary	Culpeper	FY19	\$ 3,280,000	\$ 3,280,000
112880	11828	707	Hughes River	Secondary	Culpeper	FY19	\$ 4,700,000	\$ 4,700,000
118405	746	680	LICKINGHOLE CREEK	Secondary	Culpeper	FY21	\$ 4,632,162	\$ 4,632,162
118431	11822	749	Hughes River	Secondary	Culpeper	FY21	\$ 4,856,404	\$ 4,856,404

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
118430	7739	759	MECHUNK CREEK	Secondary	Culpeper	FY21	\$ 6,954,915	\$ 6,954,915
87954	13006	635	NORFOLK SOUTHERN RAILWAY	Secondary	Culpeper	FY21	\$ 611,208	\$ 5,414,908
118983	9005	636	Swift Run	Secondary	Culpeper	FY22	\$ 5,077,029	\$ 5,077,029
118982	13035	675	Norfolk Southern Railway	Secondary	Culpeper	FY22	\$ 7,556,480	\$ 7,556,480
-26640	27907	1083	Stream	Secondary	Culpeper	FY23	\$ 4,532,891	\$ 4,532,891
100778	1858	250	BELL CREEK	Primary	Staunton	FY17	\$ 3,295,695	\$ 5,117,279
90178	2176	703	EDISON CREEK	Secondary	Staunton	FY17	\$ 1,701,429	\$ 2,420,334
97111	15753	11	I-81	Primary	Staunton	FY17	\$ 8,777,796	\$ 16,378,399
13285	16026	682	PLEASANT RUN	Secondary	Staunton	FY17	\$ 4,288,519	\$ 6,274,798
98954	17236	698	MILL CREEK	Secondary	Staunton	FY17	\$ 658,216	\$ 2,260,015
97112	20408	720	I-81	Urban	Staunton	FY17	\$ 2,245,388	\$ 10,220,470
100781	20446	33	NS RAILWAY & CREEK	Primary	Staunton	FY17	\$ 7,934,195	\$ 9,700,072
104177	20443	33	I-81	Primary	Staunton	FY18	\$ 14,904,868	\$ 16,526,362
100781	20447	33	NS RAILWAY & CREEK	Primary	Staunton	FY18	\$ 7,934,195	\$ 9,700,072
98957	1195	696	KARNES CREEK	Secondary	Staunton	FY19	\$ 2,638,208	\$ 4,420,914
113535	8055	17	I-81	Primary	Staunton	FY19	\$ 25,420,595	\$ 31,328,926
113033	15862	259	LINVILLE CK @ BROADWAY	Primary	Staunton	FY19	\$ 6,640,822	\$ 6,640,822
104182	16958	11	N F SHENANDOAH RIVER	Primary	Staunton	FY19	\$ 6,267,617	\$ 7,611,234
113487	20441	33	I-81	Primary	Staunton	FY19	\$ 14,269,467	\$ 14,269,467
117021	10327	640	S BR POTOMAC RIVER	Secondary	Staunton	FY21	\$ 4,630,089	\$ 4,630,089
117022	10228	220	E BRANCH STRAIT CREEK	Primary	Staunton	FY21	\$ 6,706,427	\$ 6,706,427
118974	1032	159	DUNLAP CREEK	Primary	Staunton	FY22	\$ 7,689,266	\$ 7,689,266
117024	2320	778	MIDDLE RIVER	Secondary	Staunton	FY22	\$ 4,569,979	\$ 4,569,979
121190	2029	624	BACK CREEK	Secondary	Staunton	FY23	\$ 18,515,668	\$ 18,515,668
121159	2428	39	GUYS RUN	Primary	Staunton	FY23	\$ 9,811,403	\$ 9,811,403
121160	1031	159	DUNLAP CREEK	Primary	Staunton	FY23	\$ 13,342,200	\$ 13,342,200
121162	17254	707	N FORK SHENANDOAH RIVER	Secondary	Staunton	FY23	\$ 7,895,002	\$ 7,895,002
110433	6829	674	COLVIN RUN	Secondary	Northern Virginia	FY17	\$ 2,301,628	\$ 4,173,139
105898	11253	673	CATOCTIN CREEK	Secondary	Northern Virginia	FY17	\$ 3,836,601	\$ 3,836,601
110032	19934	236	ROUTE I-395	Primary	Northern Virginia	FY17	\$ 11,790,794	\$ 15,845,786
111688	14320	627	QUANTICO CREEK	Secondary	Northern Virginia	FY18	\$ 880,167	\$ 1,270,931
111320	6685	613	ARLINGTON BOULEVARD	Secondary	Northern Virginia	FY18	\$ 2,247,304	\$ 2,492,556
111318	6269	28	BULL RUN	Primary	Northern Virginia	FY18	\$ 2,586,993	\$ 2,586,993
111691	217	120	PIMMITT RUN	Primary	Northern Virginia	FY18	\$ 6,388,101	\$ 6,388,101
111678	6235	7	SUGARLAND RUN	Primary	Northern Virginia	FY18	\$ 3,143,304	\$ 3,143,304
111689	11305	711	BRANCH OF CATOCTIN CREEK	Secondary	Northern Virginia	FY18	\$ 2,291,317	\$ 2,298,761
104406	19944	7	ROUTE I-395; RAMPS C&G	Primary	Northern Virginia	FY18	\$ 3,949,496	\$ 14,220,612
118817	11288	699	WASH. OLD DOM. REG. TRL.	Secondary	Northern Virginia	FY21	\$ 2,686,652	\$ 2,686,652
118788	43	0	ROUTE I-66	Primary	Northern Virginia	FY21	\$ 3,354,192	\$ 3,354,192
118787	11163	611	GOOSE CREEK	Secondary	Northern Virginia	FY21	\$ 3,702,762	\$ 3,702,762
118832	265	0	RTE. 395	Secondary	Northern Virginia	FY21	\$ 4,262,673	\$ 4,262,673
118348	6272	29	CUB RUN	Primary	Northern Virginia	FY21	\$ 3,709,471	\$ 3,761,471
119204	3	0	RTE. 120 N. GLEBE ROAD	Secondary	Northern Virginia	FY22	\$ 15,269,000	\$ 15,269,000
119383	6673	611	POHICK CREEK	Secondary	Northern Virginia	FY22	\$ 11,016,000	\$ 13,151,673
121565	14234	95	NEABSCO CREEK	Interstate	Northern Virginia	FY23	\$ 47,079,151	\$ 47,079,151
122017	11375	792	SUGARLAND RUN	Secondary	Northern Virginia	FY23	\$ 9,550,000	\$ 9,550,000
121563	5	0	395 & RMP D&F	Secondary	Northern Virginia	FY23	\$ 6,741,857	\$ 6,741,857

^{*} For Fed ID #20353, UPC #115011 has the allocated SGR funding. All other UPCs associated with this Federal Bridge Identification Number are addition funding via DBF sources.

 $[\]ensuremath{^{**}}$ For Fed ID #18073, UPC #105535 is the VDOT portion. UPC #110822 is the Locality portion.

Table E-2- SGR Structures in Virginia's Approved FY2024 to FY2029 SYIP: Locality-Owned Structures

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
71874	19965	0	S. F. POWELL RIVER	Urban	Bristol	FY17	\$ 495,269	\$ 1,949,677
111651	19974	0	BEAVER CREEK	Urban	Bristol	FY17	\$ 286,000	\$ 286,000
111267	22441	0	BENGES BRANCH	Urban	Bristol	FY17	\$ 316,000	\$ 316,000
112277	22467	460	CLINCH RIVER	Primary	Bristol	FY17	\$ 7,819,592	\$ 7,819,592
111238	22542	16	CAVITTS CREEK	Primary	Bristol	FY17	\$ 2,765,748	\$ 2,765,748
111263	22543	16	CLINCH RIVER	Primary	Bristol	FY17	\$ 357,810	\$ 357,810
111261	22548	61	N FORK CLINCH RIVER	Primary	Bristol	FY17	\$ 1,500,000	\$ 1,500,000
111445	29685	5105	Levisa Fork	Urban	Bristol	FY17	\$ 575,000	\$ 575,000
111437	29696	5417	Granny Creek	Urban	Bristol	FY17	\$ 180,000	\$ 180,000
111431	29702	3137	Slate Creek	Urban	Bristol	FY17	\$ 180,000	\$ 180,000
111429	29712	3050	Slate Creek	Urban	Bristol	FY17	\$ 290,000	\$ 290,000
111448	29731	2078	Knox Creek	Urban	Bristol	FY17	\$ 170,000	\$ 170,000
111443	29739	2435	Dan Branch	Urban	Bristol	FY17	\$ 180,000	\$ 180,000
111440	29744	2080	Left Fork	Urban	Bristol	FY17	\$ 60,000	\$ 60,000
111434	29759	2164	Knox Creek	Urban	Bristol	FY17	\$ 92,500	\$ 92,500
111452	29760	2163	Knox Creek	Urban	Bristol	FY17	\$ 18,061	\$ 85,000
111451	29793	4062	War Fork	Urban	Bristol	FY17	\$ -	\$ 85,000
111436	29801	1030	Stream	Urban	Bristol	FY17	\$ 180,000	\$ 180,000
111435	29803	4263	Stream	Urban	Bristol	FY17	\$ 290,000	\$ 290,000
112353	29808	4245	Russell Fork	Urban	Bristol	FY17	\$ 265,000	\$ 265,000
113879	19971	0	BEAVER CREEK	Urban	Bristol	FY19	\$ 1,957,937	\$ 1,957,937
113881	19982	0	NS RWY	Urban	Bristol	FY19	\$ 3,000,000	\$ 3,000,000
113882	20004	0	BEAVER CREEK	Urban	Bristol	FY19	\$ 2,150,000	\$ 2,150,000
113880	22423	0	BEAVER POND CREEK	Urban	Bristol	FY19	\$ 996,970	\$ 996,970
113878	22461	0	BIG CREEK	Urban	Bristol	FY19	\$ 627,533	\$ 627,533
113932	22469	67	CLINCH RIVER	Primary	Bristol	FY19	\$ 1,708,088	\$ 1,741,168
113877	22539	632	FAIRGROUND CREEK	Secondary	Bristol	FY19	\$ 708,024	\$ 708,024
113876	22544	16	CLINCH RIVER	Primary	Bristol	FY19	\$ 2,300,000	\$ 2,300,000
113885	22611	0	N F HOLSTON RIVER	Urban	Bristol	FY19	\$ 615,860	\$ 615,860
113875	29679	0	Bluestone River	Urban	Bristol	FY19	\$ 620,484	\$ 620,484
117082	20608	0	MF HOLSTON RIVER	Urban	Bristol	FY21	\$ 4,273,941	\$ 4,273,941
117081	22444	0	CLEAR CREEK	Urban	Bristol	FY21	\$ 1,219,877	\$ 1,219,877
121136	20001	0	BEAVER CREEK	Urban	Bristol	FY23	\$ 55,174,696	\$ 99,109,620
110574	21771	11	APPERSN DR O ROANOKE RV	Primary	Salem	FY17	\$ 864,086	\$ 11,374,620
110689	21774	11	COLORADO ST O NS RWY	Primary	Salem	FY17	\$ 6,435,092	\$ 6,450,000
110931	21258	0	COMMERCE ST O PEAK CK.	Urban	Salem	FY19	\$ 868,249	\$ 2,176,293
116980	22403	0	MCGHEE ST O NS RAILWAY	Urban	Salem	FY21	\$ 5,988,525	\$ 5,988,525
121020	22525	111	WALNUT BRANCH	Primary	Salem	FY23	\$ 4,217,606	\$ 4,217,606
111919	20504	0	Ivy Creek	Urban	Lynchburg	FY17	\$ 1,972,051	\$ 2,744,151
119215	20190	293	Dan River	Urban	Lynchburg	FY21	\$ 4,265,350	\$ 5,265,350
121053	20600	6012	NS Railway	Urban	Lynchburg	FY23	\$ 14,714,539	\$ 14,714,539
110969	9634	732	CSX RAILWAY	Urban	Richmond	FY17	\$ 1,774,000	\$ 1,774,000
111735	21113	36	APPOMATTOX RIVER CANAL	Primary	Richmond	FY17	\$ 1,901,705	\$ 2,025,000
104888	21583	360	JAMES RIVER SOUTH DIV	Primary	Richmond	FY17/FY23	\$ 24,039,202	\$ 42,500,340
104888	21584	360	JAMES RIVER NORTH DIV	Primary	Richmond	FY17/FY23	\$ 24,039,202	\$ 42,500,340
113479	9657	0	NORTH RUN	Urban	Richmond	FY19	\$ 3,750,000	\$ 7,327,452
113481	21185	301	LIEUTENANT RUN	Primary	Richmond	FY19	\$ 616,000	\$ 616,000

SGR UPC	FED ID	Route No.	Featured Intersection	System	District - Name	SGR Selection Year	Allocation SGR Funds Total	Allocations All Funds Total
104217	21357	0	BROAD ROCK CREEK	Urban	Richmond	FY19	\$ 499,000	\$ 1,100,000
113294	21378	0	GILLIES CREEK	Urban	Richmond	FY21	\$ 1,251,728	\$ 3,351,728
118541	21575	250	CSX ABANDONED SPUR LINE	Primary	Richmond	FY21	\$ 3,965,009	\$ 3,965,009
113290	21585	360	MANCHESTER CANAL	Primary	Richmond	FY21	\$ 1,674,167	\$ 6,678,167
105624	20720	105	N.N. Resevoir	Primary	Hampton Roads	FY17	\$ 5,022,067	\$ 24,000,000
107350	21797	0	CHESAPEAKE&ALBEMARLE CAN	Urban	Hampton Roads	FY17	\$ 4,036,475	\$ 7,180,585
111002	21827	13	RTE. 460 & NS RAILWAY	Primary	Hampton Roads	FY17	\$ 5,110,040	\$ 5,984,452
111032	21937	460	RTE 166 & U # 1808	Primary	Hampton Roads	FY17	\$ 2,215,700	\$ 2,979,677
111033	22027	32	CYPRESS SWAMP	Urban	Hampton Roads	FY17	\$ 1,988,889	\$ 2,705,971
111038	22088	337	Jerico Canal	Urban	Hampton Roads	FY17	\$ 36,595	\$ 1,084,027
111037	22091	337	Beamons Mill Pond	Urban	Hampton Roads	FY17	\$ 880,183	\$ 1,121,252
111042	22121	639	SBD SYS RR & NS RAILWAY	Urban	Hampton Roads	FY17	\$ 2,838,000	\$ 3,192,563
111040	22137	660	Somerton Creek	Urban	Hampton Roads	FY17	\$ 1,981,084	\$ 2,589,652
108984	22159	688	Kilby Creek Spillway	Urban	Hampton Roads	FY17	\$ 778,000	\$ 2,128,000
107287	21217	239	PARADISE CREEK	Primary	Hampton Roads	FY19	\$ 8,342,928	\$ 10,367,928
113696	21816	0	LINDSEY DRAINAGE CANAL	Urban	Hampton Roads	FY19	\$ 1,251,000	\$ 1,251,000
113693	21821	0	TRIB. GOOSE CREEK	Urban	Hampton Roads	FY19	\$ 1,195,000	\$ 1,228,479
113694	21824	0	SPILLWAY AT NORFOLK RES.	Urban	Hampton Roads	FY19	\$ 7,529,589	\$ 7,529,589
113697	21935	407	Indian River	Primary	Hampton Roads	FY19	\$ 5,128,000	\$ 5,128,000
113698	22110	613	Kingsale Swamp	Urban	Hampton Roads	FY19	\$ 839,000	\$ 1,238,892
113699	22148	668	SPIVEY SWAMP	Urban	Hampton Roads	FY19	\$ 838,000	\$ 1,193,000
113700	22150	668	Mill Swamp	Urban	Hampton Roads	FY19	\$ 994,000	\$ 1,420,000
113701	22158	688	KILBY CREEK	Urban	Hampton Roads	FY19	\$ 650,000	\$ 745,000
113695	30267	17	DEEP CREEK	Secondary	Hampton Roads	FY19	\$ 1,153,000	\$ 1,153,000
118374	21799	0	Indian Creek	Urban	Hampton Roads	FY21	\$ 3,580,000	\$ 3,580,000
118373	21881	166	NS Railway	Primary	Hampton Roads	FY21	\$ 20,573,000	\$ 20,573,000
119263	21800	0	Pocaty Creek	Urban	Hampton Roads	FY22	\$ 3,373,764	\$ 3,373,764
-26712	20249	1	OLD RAPPAHANNOCK CANAL	Primary	Fredericksburg	FY23	\$ 6,008,244	\$ 15,644,019
110890	20076	0	NORFOLK SOUTHERN RAILWAY	Urban	Culpeper	FY17	\$ 2,499,784	\$ 2,661,556
110891	20092	250	RUGBY AVE	Primary	Culpeper	FY17	\$ 2,440,803	\$ 2,466,885
110892	20094	250	RTE 29 BUSINESS	Primary	Culpeper	FY17	\$ 3,681,786	\$ 3,681,786
110893	20096	250	NORFOLK SOUTHERN RAILWAY	Primary	Culpeper	FY17	\$ 3,158,945	\$ 3,158,945
75878	20087	20	CSX & WATER STREET	Primary	Culpeper	FY19	\$ 5,280,739	\$ 38,078,180
118295	20073	0	DAIRY RD O RTE 250 BP	Urban	Culpeper	FY21	\$ 7,210,664	\$ 7,210,664
111177	22294	0	CSX RAILROAD	Urban	Staunton	FY17	\$ 134,686	\$ 2,224,996
112964	20473	0	WOODS CREEK	Urban	Staunton	FY19	\$ 1,662,561	\$ 1,662,561
118973	20149	0	JACKSON RIVER	Urban	Staunton	FY22	\$ 13,767,017	\$ 13,987,017
109953	30099	0	TRIPPS RUN	Secondary	Northern Virginia	FY21	\$ 917,521	\$ 2,437,332
118306	105	0	FOUR MILE RUN	Primary	Northern Virginia	FY23	\$ 6,736,389	\$ 26,390,822