Safety and Operations Study

July 2018

VDOT

Table of Contents

Table of Contents...$\ldots . .$. i
List of Figures ii
List of Tables..$\ldots i i$
Definition of Terms. iii
Sources.Executive Summary.v
E. 1 Operational Analysis and Recommendation vii
E. 2 Recommendations and Action Plan. vii

1. Introduction.1
1.1 Study Area...3
1.2 Study Team and Coordination
1.3 Study Goals and Coordination.3
2. Methodology 5
2.1 Study Methodology 7
2.2 Systemic Analysis Process7
2.3 Public Involvement7
2.4 Crash Modification Factors8
3. Operational Analysis. 9
3.1 Existing Conditions.. 12
3.2 2040 No Build Conditions 14
3.32040 Build Conditions. 16
4. Systemic Analysis 19
4.1 Introduction and Methodology 21
4.2 Systemic Risk Factor Analysis 21
4.3 Risk Factor Determination... 21
4.4 Systemic Conclusion. 27
4.5 HSM Spreadsheets 27
5. Site Specific Analysis 29
5.1 Introduction... 31
5.2 Site Specific Location \#1 Northfield Drive 32
5.3 Site Specific Location \#2 Rob's Drive 33
5.4 Site Specific Location \#3 Kings Fork Road 34
5.5 Site Specific Location \#4 Lake Prince Drive.. 35
5.6 Site Specific Location \#5 Prudence Road. 36
5.7 Site Specific Location \#6 1,200 Feet East of 37
5.8 Site Specific Location \#7 Gardner Lane. 38
5.9 Site Specific Location \#8 Old Myrtle Road. 39
5.10 Site Specific Location \#9 2,200 Feet West of Old Myrtle Road...40
5.11 Site Specific Location \#10 1,750 Feet East of Ennis Mill Road..41
5.12 Site Specific Location \#11 1,000 East of Old Suffolk Road 42
6. Arterial Preservation and Emergency Evacuation 45
6.1 Introduction 47
6.2 Arterial Preservation. 47
6.3 Route 460 Corridor Preservation 47
6.4 Access Management 47
6.5 Evacuation Route Qualitative Evaluation. 47
7. Long Term Improvements 49
7.1 Alternative 1 51
7.2 Alternative 2. 51
7.3 Alternative 3 51
8. Recommendations 53
8.1 Introduction and Methodology 55
8.2 Conclusion.. $\ldots 5$

Appendix A Systemic Templates

Appendix B Citizen Comments
Appendix C Existing Traffic Counts
Appendix D Operational Analysis Outputs
Appendix E Signal Warrant Screening
Appendix F Growth Rate
Appendix G HSM Extended Spreadsheet
Appendix H Site Specific Cost
Appendix I Long Term Cost Estimate
Appendix J Systemic Cost

List of Figures

Figure ES. 1 Crash Type Distribution vii
Figure 1.1 Study Area2
Figure 2.1 Study Process7
Figure 2.2 Systemic Analysis Process. 7
Figure 3.1 Existing Lane Configuration 11
Figure 3.2 HCM Exhibit 18-4: Level of Service Criteria 12
Figure 3.3 HCM Exhibit 19-1: Level of Service Criteria. 12
Figure 3.42017 Existing Peak Hour Turning Movement Volumes 13
$\begin{array}{ll}\text { Figure 3.5 } & 2040 \text { No Build Peak Hour Turning Movement } \\ & \text { Volumes }\end{array}$ Volumes15
Figure 3.6 2040 Build Lane Configuration 17
Figure 4.1 Systemic Process 21
Figure 4.2 Speeding Determination for Rear End Crashes 22
Figure 4.3 Speeding Determination for Angle Crashes. 23
Figure 4.4 Speeding Determination for Roadway Departure Crashes 25
Figure 4.5 Corridor and Intersection Template Locations 26
Figure 4.6 HSM Spreadsheet. 27
Figure 5.1 Site Study Locations 30
Figure 5.2 Site Specific Location \#1 Crash Diagram. 32
Figure 5.3 Site Specific Location \#2 Crash Diagram 33
Figure 5.4 Site Specific Location \#3 Crash Diagram 34
Figure 5.5 Site Specific Location \#4 Crash Diagram 35
Figure 5.6 Site Specific Location \#5 Crash Diagram 36
Figure 5.7 Site Specific Location \#6 Crash Diagram 37
Figure 5.8 Site Specific Location \#7 Crash Diagram 38
Figure 5.9 Site Specific Location \#8 Crash Diagram 39
Figure 5.10 Site Specific Location \#9 Crash Diagram 40
Figure 5.11 Site Specific Location \#10 Crash Diagram 41
Figure 5.12 Site Specific Location \#11 Crash Diagram 42
Figure 7.1 Typical Sections. 52

List of Tables

Table 2.1 Crash Modification Factors 8
Table 3.1 Summary of Intersection Peak Hours 12
Table 3.2 2017 Existing Conditions Level of Service Results Summary. 12
Table 3.3 Annual Average Daily Traffic Growth Rates. 14
Table $3.4 \quad 2040$ No Build Conditions Level of Service Results Summary. 14
Table 3.5 2040 Build Conditions Level of Service Results Summary16
Table 4.1 Focus Crash Types 21
Table 4.2 Crashes by Intersection Type22
Table 4.3 Crashes by Time of Day.. 22
Table 4.4 Rear End Crashes by Speed Limit. 22
Table 4.5 Rear End Crashes by Vehicle Type 22
Table 4.6 Rear End Crashes by Vehicle Driver Actions $\ldots22$
Table 4.7 Rear End Crashes by Roadway Conditions. 23
Table 4.8 Route 460 Turn Lane Summary 23
Table 4.9 Angle Crashes by Speed Limit. 23
Table 4.10 Angle Crashes by Vehicle Type.24
Table 4.11 Angle Crashes by Vehicle Driver Actions. 24
Table 4.12 Angle Crashes by Direction of Travel. 24
Table 4.13 Roadway Departure Crashes by Corridor Type. 24
Table 4.14 Roadway Departure Crashes by Direction of Travel...24
Table 4.15 Road Conditions for Roadway Departure Crashes 25
Table 4.16 Roadway Crashes by Vehicle Type. 25
Table 4.17 Roadway Departure Crashes by Vehicle Driver Actions... 25
Table 4.18 Roadway Departure Crashes by Driver Condition. .25
Table 5.1 Route 460 Specific Locations 31
Table 5.2 Site Specific Cost Estimate 43
Table 8.1 Recommended Improvements.. 55

Definition of Terms

Crossover - a break in the landscaped or concrete median

KAB Crashes - Fatal and severe crashes as noted by the KABCO scale: $\mathrm{K}=$ fatal crash; $A=$ incapacitating injury; $B=$ non-incapacitating injury; $C=$ possible injury; and $\mathrm{O}=$ no injury.

MUTCD - Manual on Uniform Traffic Control Devices for Streets and Highways. Published by the Federal Highway Administration (FHWA) to provide standardization of traffic control devices throughout the United States. Compliance with the MUTCD helps promote safe, orderly and efficient movement of traffic
PSI - Potential for Safety Improvement. A statistical measurement providing an indication of where crashes may be reduced with intersection/corridor improvements or upgrades. It is the difference between expected crashes and actual crashes.

Roadway Departure - a crash where the vehicle ran off the road either to the right or to the left.

Safety Edge - a sloped pavement edge to the ground to aid vehicle recovery from a roadway departure

Vehicle Miles Traveled (VMT) - The number of miles collectively traveled by all vehicles on a specific stretch of roadway for one year.

Sources

American Association of State Highway and Transportation Officials. Highway Safety Manual. U.S. Department of Transportation, Federal Highway Administration.

Federal Highway Administration. Crash Modification Clearinghouse. http:// www.cmfclearinghouse.org/. Federal Highway Administration.
Federal Highway Administration Office of Safety. Integrating the HSM into the Highway Project Development Process. U.S. Department of Transportation, Federal Highway Administration.

Federal Highway Administration Office of Safety. Systemic Safety Project Selection Tool. U.S. Department of Transportation, Federal Highway Administration.
Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition with Revision Numbers 1 and 2 incorporated, dated May 2012. U.S Department of Transportation.
Virginia Department of Transportation. Corridors of Statewide Significance Corridor Safety Assessment Process Guidelines. Commonwealth of Virginia.
Virginia Department of Transportation. Road Design Manual. Commonwealth of Virginia.
Virginia Department of Transportation. Traffic Operations and Safety Analysis Manual. Commonwealth of Virginia
GIS Data:
Speed limit data was based on information on the VDOT website: http:// virginiaroads.org/Mapping/\#SpeedZones and field review of speed limit signs.

GIS lighting, signs and traffic signals received from VDOT.
Crash records provided by VDOT (2012-2016).
Base map data and graphics throughout this report were created using ArcGIS® software by Esri. ArcGIS® and ArcMap ${ }^{T M}$ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved.

Operational Analysis:
Existing signal timings received from City of Suffolk and VDOT.
Turning movement counts were conducted by VHB on Tuesday, May 16 and Thursday, May 18, 2017.
Trafficware, LLC. (2017). Synchro Studio 9 User Guide. Sugar Land, TX

Executive Summary

The Virginia Department of Transportation (VDOT) identifed the need to evaluate the Route 460 corridor for improved transportation safety and operations within the City of Suffolk and Isle of Wight County. The project corridor spans from 1,500 feet west of the Route 58 and Route 460 interchange to the eastern Town of Windsor limits. This report documents the findings of the safety and operational analyses and presents the final recommendations and plan of action for the corridor. The goal of the study was to identify and develop a plan of low-cost improvements that VDOT can implement to make Route 460 a safer transportation facility.

E. 1 Operational Analysis and Recommendation

As part of the study, an operational analysis of signalized and key unsignalized intersections along the project corridor was conducted. The evaluation examined existing conditions, 2040 No Build and 2040 Build conditions. Additionally, a signal warrant screening was conducted at the Old Suffolk Road and Route 460 intersection in order to determine if a signal may be warranted at that intersection. The results of the operational analysis, combined with the safety analysis guided site-specific operational recommendations. The operational recommendations included changes to signal timings and phasing, the implementation of flashing yellow arrow signals for protected/permissive movements, and lane use changes that result in changes to signal phasing

E 2 Recommendations and Action Plan

The study utilized five years of crash data (2012 - 2016) to assess the current safety of the Route 460 corridor in accordance with the Corridor Safety Assessment (CSA) Process Guideline prepared for Corridors of Statewide Significance (CoSS). The data set included 242 crash records categorized as roadway departure, crash with an animal, angle, rear end, sideswipe or other. The distribution by crash type is shown in Figure ES. 1.

The data was processed from multiple perspectives to provide the most comprehensive evaluation of the roadway conditions. The results were used to prepare a set of countermeasures which can predictively produce facilities with educed crash rates after implementation when referencing the Federal Highway Administration's (FHWA) Crash Modification Factors Clearinghouse (http://www. cmfclearinghouse.org).
The safety techniques can be organized into three categories. The three categories, and example measures, are described below:

- Positive guidance and recovery measures - widening shoulders, installing safety edge, and enhancing roadway delineation and lighting where needed
- Unsignalized intersection measures - construction of turn lanes at select intersections, installing intersection warning signs, and speed enforcement
- Signalized intersection measures - installing high visibility signal backplates, installing intersection warning signs and lane control markings, installing overhead lane use signs, and speed enforcement.
The countermeasures were assigned throughout the Route 460 corridor through the hybrid approach of addressing crash history and potential crash risk. The analysis led to a series of recommendations which emerged from both systemic and site specific evaluations. All details can be found in the full document and appendices.

Figure ES.1.
Crash Type Distribution.

Introduction

chapter
 1

Figure 1.1
Study Area.

VDOT has been working to improve Route 460 within Hampton Roads for decades. There was a proposed widening project along this segment that would have provided a divided four-lane highway. While this project was not funded VDOT saw there was a need to address safety concerns along Route 460 with low-cost easily implementable solutions
Based on known safety concerns and changes in traffic on Route 460, VDOT requested that VHB assess the current safety and operational conditions of the corridor. At the conclusion of the assessment, VHB was to determine modifications that would improve safety and operations for personal and commercial traffic. This report documents the findings of the study and presents the following operational analysis, systemic analysis of intersections and corridor segments, intersection assessment, site specific location evaluation, arterial preservation, evacuation assessment, and recommendations.

1.1 Study Area

The study area is along the Route 460 corridor. The study area begins approximately 1,500 feet west of Route 460 and U.S. Route 58 interchange and extends to the eastern limits of the Town of Windsor, a distance of approximately 6.6 miles. Regionally, Route 460 is a principal east - west corridor linking Norfol to Petersburg. Within the study area, Route 460 traverses Suffolk and Isle of Wight County.

It should be noted that the original study limits included the Town of Windsor However, improvements within the Town limits would require substantial right of way impacts and costs for major reconstruction. Based on the initial analysis of traffic data, the crashes that have occurred in the higher speed sections of the corridor resulted in a greater number of persons being injured. As such, the limits of the study were revised to the eastern Town of Windsor limits.
Route 460 has a dual purpose, serving as a "main street" for local residents and also a popular alternative commercial trucking route, in lieu of Interstate 64 Route 460 is a four-lane, undivided highway with uncontrolled access. Speed limits vary from 35 miles per hour (MPH) to 55 MPH.

1.2 Study Team and Coordination

The Study Team includes local and regional staff from VDOT and VHB. A team of Project Stakeholders augments the Study Team to guide the consultant through the duration of the study, review all technical documents, and provide direct input on recommendations. The Stakeholders include representatives from VDOT's Hampton Roads District, in addition to representatives from City of Suffolk, Isle of Wight, Town of Windsor and Hampton Roads Transportation Planning Organization (HRTPO). The Project Stakeholders met at critical decision points throughout project development.

1.3 Study Goals and Coordination

Specific goals and objectives were developed at the outset based on field reviews of the corridor, information received during the initial scoping process, and input from the initial stakeholder meeting. The goal of the study was to set forth a set of tiered recommendations of signs, pavement markings, geometric changes, traffic control techniques and other improvements to enhance safety and operations of the Route 460 corridor. The recommendations were developed through an evaluation of traffic operations and crash history by proactively applying templates of proven safety techniques in combination with site specific measures that have proven safety results.
The objectives in comprehensively assessing the safety of the corridors are as follows:

- Conduct a field review, inventory, and evaluation of existing conditions.
- Identify corridor users, roadway characteristics, and key issues affecting travel along the corridor
Synthesize background, traffic operations, and crash data
- Develop recommendations that address safety concerns and operational issues.

Provide planning level costestimates for associated study recommendations This reportprovides the documentation ofthestudy, results, and recommendations. It is generally organized by existing conditions, operational analysis, systemic evaluation, site specific location evaluation, arterial preservation and evacuation assessment and recommendations.

Methodology

chapter
 2

2.1 Study Methodology

The study follows VDOT's Corridor Safety Assessment (CSA) Process Guideline prepared for Corridors of Statewide Significance (COSS). The CSA process is a systemic approach to proactively reduce potential crashes using a series of templates with tiered application for various geometric conditions. The methodology for this study is based on the layered nine step CSA process, see Figure 2.1. The final recommendations are a product of the systemic analysis, field review and observations, and the site specific location evaluation.
Five-year (2012-2016) crash data was used to measure current crash trends and develop site specific improvements to achieve a reduction in the number of crashes or the severity of crashes. The existing field conditions were documented

1	Scoping Meeting/ Select CoSS Route Segments
2	Pre-Field Review Data Analysis
3	Kickoff Meeting
4	CSA Field Review
5	Post Field Review Data Synthesis
6	Finding and Recommendations
7	Planning Level Cost Estimate, Recommended Scheduling \& Work Plan
8	Stakeholder Review
9	Finalize Documentation

Figure 2.1. Study Process.
through a field assessment and the database inventory of existing roadway attributes. Signals, pavement condition, pavement markings, and stormwater collection and drainage were the most thoroughly documented attributes, as the scope of this study did not include an asset inventory.
VHB took a hybrid approach to evaluating the corridor using a process that was created by VHB for VDOT's CSA (see Figure 2.2), whereby systemic and site specific approaches were combined to comprehensively review the Route 460 corridor. With this approach, VHB utilized systemic countermeasure packages developed for the improvements as needed. The VDOT approved CoSS templates were modified to be specific to Route 460 and were used to identify up to three tiers of countermeasure treatments to enhance safety. The templates are provided in Appendix A. The findings of the systemic analysis are documented in Chapter 4.

As part of this study, a portion of the recommendations were analyzed using the VDOT Extended Highway Safety Manual (HSM) Part C Spreadsheets to predict the crashes on the corridor. Results are provided in Chapter 4.
GIS mapping tools and crash data analysis for a five-year period were used to identify specific areas of concern or locations that have a potential for safety improvement. A more in-depth review was conducted at 11 site specific locations which are described in detail in Chapter 5.
Through the public involvement process, the citizens in the City of Suffolk and Isle of Wight County expressed concern on two major elements of the corridors: turning lanes and the lack of shoulders. The results and recommendations are discussed in Chapter 6.

2.2 Systemic Analysis Process

The following items are detailed in the study report:

- Recommended upgrades of traffic control devices;
- Recommended systemic countermeasure packages to address identified intersections and corridor segments; and,
- Recommended site specific improvements for 11 locations along the corridor.

2.3 Public Involvement

This study relied heavily on the crash data to guide analysts to the site specific locations, to perform the systemic evaluation, and to apply the appropriate templates; nonetheless, there is always value in hearing citizens' perspectives and concerns. Crash history is a documentation of events, but does not capture the daily experience of the local community. The key components of the public involvement for this study were:

low

Figure 2.2.
Systemic Analysis Process.

- Initial Scoping Meetings;
- Coordination with Elected Officials and Key Stakeholders; and
- Citizen Information Meetings.

Scoping meetings relied on the collaboration between VDOT Hampton Roads District, City of Suffolk, Isle of Wight, and Hampton Roads Transportation Planning Organization (HRTPO) to define and refine the scope of the study. This process allowed the team to identify other areas or items for consideration and evaluation

Additionally, four Citizen Information Meetings (CIM) were held; two during the initial investigation phase and two at the final stage. During each phase, one meeting was held in the City of Suffolk and one meeting in the Town of Windsor Citizen comments were solicited during the CIM\#1, held on October 18, 2017 at the Kings Folk Middle School, and CIM\#2, held on October 19, 2017 at the Windsor High School. Two follow up meetings, CIM\#3 and CIM\#4, were held on February 20, 2018 and February 22, 2018, respectively at the same locations to report on analysis results and potential countermeasures which would be in the recommendations.

CIM\#1 and CIM\#2 included boards displayed for viewing, a continuous loop video of the corridor, and study team representatives engaged in conversation with citizens on their experiences along the corridors. A handout was provided for capturing comments which could be mailed in and was made available electronically after the meeting. The comment period was open until October 30, 2017.

Ten citizens provided comments (see Appendix B). Of the 14 locations that citizens could comment on, Locations \#3, 8, and 11 received the majority of comments. Six comments referenced widening the existing roadway or installing turning lanes. Traffic volume, lack of proper shoulders, and lack of medians made up 3 comments. One citizen commented on how Location \#3 needed an advanced warning signal to try and combat observed red-light running

The comments received were reviewed during the analysis of the corridors and then again after the recommendations were developed. The review was performed to ensure the concerns were taken into consideration during the study.

Two follow-up meetings, CIM\#3 which was held on February 20, 2018 at Windsor High School, and CIM\#4 which was held on February 22, 2018 at the Kings Fork Middle School, as an update on the progress of the study. The study presentation provided an overview of the study process, some of the countermeasures which were in the recommendations, and the schedule. Additional comments were received and reviewed to ensure concerns were taken into consideration in the report.

2.4 Crash Modification Factors

A crash modification factor (CMF) is a factor, based on documented safety research studies, used to compute the expected number of crashes after mplementing a given countermeasure at a specific site. CMFs provide some indication of the potential benefit, or lack thereof, associated with specific countermeasures. The Federal Highway Administration (FHWA) compiles CMF data from published safety studies and posts them in the CMF Clearinghouse (http://www.cmfclearinghouse.org/index.cfm) to help practitioners select the most effective safety treatments. While CMF data is not available for all potential countermeasures, the CMF Clearinghouse provides a useful and consolidated source of data to help engineers, planners, and project owners make informed decisions.

There are many countermeasure techniques recommended in this study and only some of them have CMFs associated with them. Table 2.1, below, is a sample of the techniques and the corresponding CMFs used in the study

How do CMF's work?

CMFs are a multiplicative factor that can be used to estimate the number of crashes with implementation of the selected countermeasure. The following equation can be used to calculate the estimated crashes with the treatment:

$$
\binom{\text { Estimated Crashes }}{\text { WITH Treatment }}=(\text { CMF }) \times\binom{\text { Estimated Crashes }}{\text { WITHOUT Treatment }}
$$

Example:
A location had 10 crashes per year during the study period. The countermeasure has a CMF of 0.8 , meaning according to research, this countermeasure may provide a 20% reduction in crashes. Therefore, the expected crashes after implementation of the countermeasure is 8 crashes per year.

$$
(\text { Expected crashes })=(0.8) \times\binom{ 10 \text { crashes }}{\text { per year }}=\binom{8 \text { crashes per year }}{\text { after implementation }}
$$

Table 2.1.
Crash Modification Factors.

Countermeasure	CMF	Notes	
Install shoulder rumble strips	$0.82(18 \%$ reduction $)$	Roadway Departures - all severities	CMF Clearinghouse
Install center line rumble strips	$0.82(18 \%$ reduction)	All Crashes - fatal, serious injury	CMF Clearinghouse
Widen shoulder (paved) (from 2 to 4 ft$)$	$0.89(11 \%$ reduction)	All Crashes - all severities	CMF Clearinghouse
Installation of safety edge treatment	$0.85-1.00(0-15 \%$ reduction)	All Crashes - all severities	CMF Clearinghouse
Add dynamic intersection warning signs	$0.814-0.918(8.2 \%-18.6 \%$ reduction)	All Crashes - all severities	CMF Clearinghouse
Intersection lighting	$0.881-0.92(8-11.9 \%$ reduction $)$	Nighttime crashes - all severities	CMF Clearinghouse
Directional medians to allow left-turns and u-turns	$0.77(23 \%$ reduction)	All Crashes - all severities	CMF Clearinghouse
Replace a direct leff turn with aright-turn/u-turn 1			
(RCUT Intersection)	$0.8(20 \%$ reduction)	All Crashes - all severities	CMF Clearinghouse
Provide a right-turn lane on one major road approach	$0.86-0.92(8-14 \%$ reduction)	All Crashes - all severities	CMF Clearinghouse
Corridor Access Management	$0.77-0.95(5-23 \%$ reduction)		FHWA Proven Countermeasures

[^0]
Operational Analysis

chapter
 3

As part of the Route 460 Study, VDOT requested an analysis of the operational conditions along the corridor to determine areas for improved operations. This evaluation examined the existing, 2040 No Build and 2040 Build conditions. Additionally, the analysis included a high-level signal warrant screening at the intersection of Old Suffolk Road and Route 460.
As part of this analysis, existing turning movement counts were conducted at identified signalized and unsignalized intersections. Those volumes along with existing signal timings and lane geometry were utilized to analyze the existing conditions. Growth rates that were developed from VDOT's regional traffic model were utilized to project the volumes for the 2040 No Build and Build analyses. Intersections with poor level of service, or information gathered from community meetings and safety analysis helped guide the improvements that were tested in the 2040 Build analysis. The following section details the operational analysis and results.

3.1 Existing Conditions

The preparation of operational analysis required a thorough understanding of the existing roadway conditions at the subject intersections. Elements incorporated into the baseline analysis include roadway lane geometry, shown in Figure 3.1, and hourly traffic volumes.
Traffic around the site includes trucks, passenger vehicles, buses and service vehicles as well as emergency response vehicles. Based on the 2016 Annual Daily Traffic (AADT) data available on the Virginia Department of Transportation (VDOT) web site, 20,000-27,000 vehicles per day travel through the study corridor.

3.1.1 2017 Existing Traffic Counts

VHB collected peak hour traffic counts at all study intersections on Tuesday May 6th and on Thursday, May 18, 2017. In addition, 14-hour turning movements counts were taken on Thursday, May 18th, 2017 at the intersection of Route 460/ Windsor Boulevard \& Old Suffolk Road. These 14 -hour counts were required for a signal warrant screening. As a part of the turning movement counts, pedestrian volumes were also recorded at the subject intersections. Pedestrian traffic was light and most intersections did not have any pedestrian volumes. Detailed count data is provided in Appendix C.
The turning movement traffic counts indicate that there are distinct hours during the weekday when traffic experiences its highest levels at the subject intersections. Based on the traffic count data the peak hours for the observed signalized intersections were identified as shown in Table 3.1.
Despite the variation in peak hours shown in Table 3.1, the AM and PM peak hours were assumed to be consistent along the corridor for the analysis. Therefore the peak hour volume for each intersection was used in the analysis in order to be conservative.

Table 31
Summary of Intersection Peak Hours.

ID	Intersection	AM Peak	PM Peak
1	Route 460 \& Northfield Drive	$7: 15-8: 15$	$4: 30-5: 30$
2	Route 460 \& Rob's Drive	$7: 30-8: 30$	$4: 45-5: 45$
3	Route 460 \& Kings Fork Road	$7: 15-8: 15$	$4: 45-5: 45$
4	Route 460 \& Providence Road/Lake Prince Drive	$7: 00-8: 00$	$4: 45-5: 45$
5	Route 460 Woodlawn Drive	$6: 45-7: 45$	$4: 45-5: 45$
6	Route 460 \& Old Suffolk Road	$6: 15-7: 15$	$4: 45-5: 45$
7	Route 460 \& Dominion Way	$6: 30-7: 30$	$4: 30-5: 30$

A summary AM and PM peak hour turning movement volumes at each of the intersections in the study network is presented on Figure 3.4.

The posted speed limit on Route 460 along the study corridor ranges between 45 and 55 MPH . There is a school zone speed limit at both westbound and eastbound approaches to Rob's Drive, where the school zone speed limit is 35 MPH during morning and evening drop off hours. The speed limit of 35 MPH at these approaches was used in this analysis since the drop off times fall into actual AM and PM peak hours.

3.1.2 Methodology

Capacity analyses were performed to determine the existing level-of-service (LOS) for the AM and PM peak hours for the study intersections.

Capacity analysis results are expressed in terms of LOS. LOS is a qualitative measurement of traffic operations. It is translated from a measure of delay to drivers in units of time, seconds per vehicle. The Transportation Research Board's (TRB's) Highway Capacity Manual (HCM) defines six levels of service for intersections with LOS " A " representing operating conditions with minimal constraints on traffic movements and LOS " F " representing extremely congested operating conditions. Exhibit $18-4$ of the HCM gives the criteria for signal controlled intersections, while HCM Exhibit 19-1 gives the criteria for unsignalized intersections.

As mentioned earlier, levels of service results range from LOS A being the best to LOS F being the worst. LOS D is typically used as the acceptable LOS threshold

Signalized Level of Service	Signal Delay per Vehicle (sec/veh)	Unsignalized Level of Service	Stopped Delay per Vehicle (sec/veh)
A	≤ 10.0	A	≤ 10.0
B	>10.0 and ≤ 20.0	B	>10.0 and ≤ 15.0
C	> 20.0 and ≤ 35.0	c	>15.0 and ≤ 25.0
D	>35.0 and ≤ 55.0	D	>25.0 and ≤ 35.0
E	> 55.0 and ≤ 80.0	E	> 35.0 and ≤ 50.0
F	>80.0	F	> 50.0
Figure 3.2 HCM Exhibit 18-4: Level of Service Criteria		Figure 3.3 HCM Exhibit 19-1: Level of Service Criteria	

for many states and cities, including the Commonwealth of Virginia and the City of Suffolk. Sometimes LOS E and F are accepted in certain highly urbanized and constrained areas
The analysis was performed in accordance with the VDOT requirements and guidelines provided in the Traffic Operations and Safety Analysis Manual (TOSAM). The TOSAM provides consistent and uniform direction and guidance for scoping, conducting, and reporting traffic and safety analyses in the state of Virginia. Synchro 9.1 was the software tool used for analysis determining the delay, capacity and corresponding LOS of the study intersections. The existing LOS capacity analyses were based on: (1) the existing lane use and traffic controls shown on Figure 3.1; (2) the existing AM and PM traffic volumes presented in Figure 3.4; and (3) the HCM methodologies (using Synchro 9.1 software).
LOS results summary for existing conditions are presented in Table 3.2 below. Based on the existing conditions analysis, all intersections in the study area operate acceptably at a $\operatorname{LOS} A, B$, and C.

Table 3.2.

2017 Existing Conditions Level of Service Results Summary.

ID	Intersection Name	Control	Existing	
		AM	PM	
1	Route 460/Pruden Boulevard \& Northfield Drive	Signalized	A (SB-C)	B (SB-D)
2	Route 460/Pruden Boulevard \&Rob's Drive	Signalized	B (SB-D)	B (SB-D)
3	Route $460 /$ Pruden Boulevard \& Kings Fork Road	Signalized	C (SB-F)	C (SB-E)
4	Route 460/Pruden Boulevard\&Providence Road/Lake Prince Drive	Signalized	B (SB-C)	B (NB-C)
5	Route 460/Pruden Boulevard/Woodlawn Drive	Unsignalized	(NB-C)	(NB-B)
6	Route 460/Windsor Boulevard \& Old Suffolk Rd	Unsignalized	(SB-C)	(NB-C)
7	Route 460/Windsor Boulevard \& Dominion Way	Signalized	A (NB-C)	A (NB-C)

Legend: X- Overall Level of Service, (XX-X) - Worst Approach-Worst Approach
Level of Service
Details on the expected delays at each approach in the study corridor are shown in Table D. 2 in Appendix D. The Synchro reports for the 2017 Existing conditions scenario are also included in Appendix D.

The analysis showed that all intersections operate at acceptable LOS C or better in both the AM and PM peak hours. However, even though the intersection of Route 460 and Kings Fork Road is currently operating under LOS C during both AM and PM peak hours, the southbound approach is operating at LOS F with 116 seconds of delay per vehicle (sec/veh) during AM peak hour and at LOS E with 64 $\mathrm{sec} / \mathrm{veh}$ of delay during PM peak hour.

3.1.3 Signal Warrant Screening

Evaluation of the need for a traffic signal at an intersection requires the examination of various factors such as traffic volumes, traffic flow and progression, and overall safety of the intersection to determine if a traffic signal would be warranted. Each of these elements should be considered in the signal warrant analysis. As a part of this study, a high-level traffic signal warrant screening was performed for the intersection of Route 460/Windsor Boulevard and Old Suffolk Road, to determine whether a signal would be warranted under the existing conditions. This signal warrant screening process only included screening the peak hour and four-hour volume warrants for the existing conditions and was performed following the procedures outlined in the 2009 edition of the Manual of Uniform Traffic Control Devices (MUTCD).

More detailed documented results are presented in Appendix E. The results of the signal warrant screening showed that under the existing conditions the subject intersection does not meet the two traffic signal warrants outlined by the MUTCD, and therefore traffic signal installation is not recommended at the subject intersection under the existing conditions. However, further evaluation should be performed to determine whether signal installation would be warranted in the future if growth occurs.

3.2 2040 No Build Conditions

The preparation of the 2040 No Build operational analysis required an understanding of future growth and how that growth would affect the traffic volumes along the Route 460 corridor. The elements incorporated into the future 2040 No Build analysis include: existing roadway lane geometry, 2040 forecasted peak hour traffic volumes and existing signal timing plans.

3.2.1 Future Traffic Growth

The 2040 No Build traffic volumes were calculated in accordance with the HRTPO 2040 Long Range Plan model. The annual average daily traffic (AADT) information from the existing model for year 2009 and projected year 2040, provided by VDOT, shown in Appendix F, was used to calculate average growth rates to be used for 2040 peak hour volume projections. A summary of the calculated growth rates is presented in the Table 3.3.

Table 3.3.
Annual Average Daily Traffic Growth Rates.

Area	2009	2009	2040	2040	Growth	Growth Rate
	WB	EB	WB	EB	Rate	年

After the discussion with VDOT on the summary of the growth rates presented in Table 3.3, the decision was made to use the following growth rates:

- 1.78% conservative growth rate to be used on the eastern project segment (Route 58 to Woodlawn Drive) along the Route 460 corridor;
- 1% growth rate to be used on the western project segment (Old Suffolk Road to Dominion Way) along the Route 460 corridor
- 0.5% growth rate on the side streets.

Based on the above growth rates, peak hour turning volumes were calculated for the 2040 No Build scenario. Projected volumes are presented Figure 3.5

3.2.2 Methodology

Capacity analyses were performed to determine the 2040 No Build scenario LOS for the AM and PM peak hours for the study intersections.

Similar to the existing conditions analysis, the 2040 No Build analysis was performed in accordance to the VDOT requirements and guidelines provided in the TOSAM. Synchro 9.1 was the software tool used for analysis determining the delay, capacity and corresponding LOS of the study intersections. The 2040 No Build LOS capacity analyses were based on: (1) the existing lane use and traffic controls shown in Figure 3.1; (2) the 2040 projected AM and PM traffic volumes presented on Figure 3.5; and (3) the HCM methodologies (using Synchro 9.1 software).

LOS results summary for 2040 No Build conditions are presented in Table 3.4
Table 3.4
2040 No Build Conditions Level of Service Results Summary

ID	Intersection Name	Control	2040 No Build	
		AM	PM	
1	Route 460/Pruden Boulevard \& Northfield Drive	Signalized	A (SB-D)	B (SB-D)
2	Route 460/Pruden Boulevard \& Rob's Drive	Signalized	C (SB-D)	B (SB-D)
3	Route 460/Pruden Boulevard \& Kings Fork Road	Signalized	D (SB-F)	E (SB-F)
4	Route 460/Pruden Boulevard\&Providence Road/Lake Prince Drive	Signalized	B (SB-C)	C (NB-E)
5	Route 460/Pruden Boulevard/Woodlawn Drive	Unsignalized	(NB-D)	(NB-B)
6	Route 460/Windsor Old Suffolk Road	Unsignalized	(NB-D)	(NB-F)
7	Route 460/Windsor Boulevard \& Dominion Way	Signalized	A (NB-D)	A (NB-D)

Legend: X- Overalt Level of Service, ($x X-X$) - Worst Approach-Worst Approach
Level of Service

Details on the expected delays at each approach in the study corridor are shown in Table D. 2 in Appendix D. Appendix D also includes the Synchro reports for the 2040 No Build conditions scenario

The analyses showed that most intersections in the study area will continue to operate at acceptable LOS D or better under 2040 No Build conditions in both the AM and PM peak hours. At the signalized intersection of Route 460/Pruden Boulevard \& Kings Fork Road operations during evening peak hour are expected to fall to the unacceptable LOS E. The southbound approach at this intersection is expected to suffer longer delay operating at LOS F during both AM and PM peak hours in 2040 without additional improvements. In addition, the northbound approach at the signalized intersection of Route 460/Pruden Boulevard \& Providence Road/Lake Prince Drive is expected to fall to LOS E during evening peak hour, while the overall intersection LOS is expected to be C under 2040 No Build conditions. Also, the northbound approach at unsignalized intersection of Route 460/Windsor Boulevard and Old Suffolk Road is expected to fall to LOS F during evening peak hour under 2040 No Build conditions.

3.2.3 Recommended Improvements

Operations at signalized intersections may be improved with full corridor coordination and future splits, offsets and cycle lengths optimization. At the intersection of Route 460 and Rob's Drive, an increase in green time should improve operations on side streets. In addition, as mentioned previously, at the intersection of Route 460 and Kings Fork Road, consideration should be given to changing the existing lane configuration on the southbound approach from shared left-turn and through lane and dedicated right-turn lane to exclusive leftturn lane and shared right-turn and through lane. This modification will require signal phasing changes and consideration should be given to alternative phasing with a flashing yellow arrow (FYA) which could reduce delay at this approach. The FYA allows flexibility in left-turn phasing operation and studies have documented that they are better understood by drivers than the standard five-section signal head. The FYA also eliminates the 'yellow trap' decreasing overall delay and increasing driver safety. Therefore, installation of FYA should also be considered on the mainline at the intersection of Route 460 and Providence Road/Lake Prince Drive.

2040 No Build Peak Hour Turning Movement Volumes.

LEGEND
AM (PM) Volumes

2040 Build Conditions

Through the operational analysis of existing conditions and 2040 No Build conditions, potential shortfalls were identified along the corridor and a set of recommendations was developed to mitigate these shortfalls. The 2040 Build scenario includes all the proposed recommendations and the following elements were incorporated into the future 2040 Build analysis: improved roadway lane configuration, forecasted peak hour traffic volumes and optimized splits, offsets and cycle lengths.

3.3.1 Proposed Improvements

After a detailed review of the analysis and recommendations of existing and 2040 No Build conditions, the following changes were incorporated into the 2040 Build scenario:

- At the signalized intersection of Route 460 and Rob's Drive, green time was increased for side streets.
- At the signalized intersection of Route 460 and Kings Fork Road, on southbound approach lane configuration was changed to exclusive leftturn lane and shared through and right-turn lane with FYA implementation on the mainline and required signal phasing changes were incorporated.
- At the signalized intersection of Route 460 and Providence Road/Lake Prince Drive, FYA implementation on the mainline and required phasing changes were incorporated

3.3.2 Methodology

Capacity analyses were performed to determine the 2040 Build scenario LOS for he AM and PM peak hours for the study intersections.

As with the previous scenarios, the 2040 Build analysis was performed in accordance to the VDOT requirements and guidelines provided in the TOSAM. Synchro 9.1 was the software tool used for analysis determining the delay, capacity and corresponding LOS of the study intersections. The 2040 Build LOS capacity analyses were based on: (1) the proposed lane use and existing traffic controls shown on Figure 3.6; (2) the 2040 projected AM and PM traffic volumes presented on Figure 3.5; and (3) the HCM methodologies (using Synchro 9.1 software).
LOS results summary for 2040 Build conditions are presented in Table 3.5

Table 3.5.
2040 Build Conditions Level of Service Results Summary.

ID	Intersection Name	Control	2040 Build	
		AM	PM	
1	Route 460/Pruden Boulevard \& Northfield Drive	Signalized	A (SB-D)	B (SB-D)
2	Route 460/Pruden Boulevard \& Rob's Drive	Signalized	C (SB-D)	A (SB-D)
3	Route 460/Pruden Boulevard \& Kings Fork Road	Signalized	D (NB-F)	E (NB-F)
4	Route 460/Pruden Boulevard\&Providence Road/Lake Prince Drive	Signalized	B (SB-C)	C (NB-D)
5	Route 460/Pruden Boulevard/Woodlawn Drive	Unsignalized	(NB-D)	(NB-B)
6	Route 460/Windsor Boulevard \& Old Suffolk Rd	Unsignalized	(NB-D)	(NB-F)
7	Route 460/Windsor Boulevard \& Dominion Way	Signalized	A (NB-D)	A (NB-D)

Details on the expected delays at each approach in the study corridor are shown in Table D. 2 in Appendix D. Appendix D also includes the Synchro reports for the 2040 Build conditions scenario.

The analyses showed that most intersections are expected to continue to operate at acceptable LOS D or better with the proposed improvements in both the AM and PM peak hours with the exception of the intersection of Route 460 Boulevard and Kings Fork Road, where intersection operations are still expected to fall to the unacceptable LOS E during the evening peak hour. The analysis showed, that with the proposed improvements, the LOS at southbound approach will be improved, but LOS on the northbound approach is expected to suffer longer delay operating at LOS F during both AM and PM peak hours. In addition, LOS on the westbound approach is expected to fall to LOS E.

The northbound approach at the signalized intersection of Route 460 and Providence Road/Lake Prince Drive is expected to improve to acceptable LOS D during evening peak hour with recommended improvements under 2040 Build conditions.

The northbound approach at unsignalized intersection of Route 460 and Old Suffolk Road is still expected to fall to LOS F during evening peak hour.

3.3.3 Signal Warrant Screening

As mentioned previously, an evaluation of the need for a traffic signal at an intersection requires the examination of various factors. As a part of this study, a high-level traffic signal warrant screening was performed for the intersection of

Route 460/Windsor Boulevard and Old Suffolk Road, to determine whether a signal would be warranted under the 2040 Build conditions. This signal warrant screening process only included screening of the peak hour and four-hour warrants for the 2040 Build volumes and was performed following the procedures outlined in the 2009 edition of the Manual of Uniform Traffic Control Devices (MUTCD)

More detailed documented results are presented in Appendix E (Signal Warrant Screening). The results of the signal warrant screening showed that under the 2040 Build conditions the subject intersection does not meet the two traffic signal warrants outlined by the MUTCD, and therefore traffic signal installation is not recommended at the subject intersection under the 2040 Build conditions. However, further evaluation should be performed to determine whether signal installation is warranted if there are major changes in future growth patterns from what is expected.

3.3.4 Conclusions

The operational analysis of Existing, 2040 No Build and 2040 Build conditions showed that all intersections in the study area are expected to continue to operate at acceptable LOS D or better, with the exception of the signalized intersection of Route 460 and Kings Fork Road. During evening peak hour, the LOS at this intersection is expected to fall to LOS E with $57 \mathrm{sec} /$ veh in delay under 2040 No Build conditions, and will slightly improve to $56 \mathrm{sec} / \mathrm{veh}$ in delay with the proposed improvements under the 2040 Build conditions. Analyses of existing conditions showed that even though the overall LOS at this intersection is D, the southbound approach operates at LOS F with $125 \mathrm{sec} / \mathrm{veh}$ in delay during morning peak hour and LOS E with $70 \mathrm{sec} /$ veh in delay during evening peak hour. Implementation of the proposed lane configuration changes along with FYA, is expected to improve operations in 2040 on southbound approach to LOS C with $31 \mathrm{sec} / \mathrm{veh}$ in delay during morning peak hour and to LOS D with $43 \mathrm{sec} / \mathrm{veh}$ in delay during evening peak hour. However, the northbound approach is expected to suffer longer delay under the 2040 Build conditions, operating at LOS F with over $93 \mathrm{sec} /$ veh in delay during both morning and evening peak hours and westbound approach is projected to operate at LOS E with $57 \mathrm{sec} / \mathrm{veh}$ in delay during evening peak hour. The proposed improvements should help shift excessive delay on the southbound approach to other approaches, however, the overall LOS at this intersection is still expected to be a LOS E.

The proposed changes at the signalized intersection of Route 460/Pruden Boulevard and Providence Road/Lake Prince Drive are expected to improve the overall intersection delay and should improve the northbound approach operations from LOS E with $56 \mathrm{sec} /$ veh in delay under 2040 No Build conditions to LOS D with $49 \mathrm{sec} / \mathrm{veh}$ in delay under 2040 Build conditions.

The City of Suffolk and VDOT should continue to monitor traffic volumes in the study corridor to determine if the growth in this area occurs as predicted and whether other roadway improvements should be considered to improve operations.

Systemic Analysis

chapter
 4

4.1 Introduction and Methodology

There are two primary approaches to addressing safety: using a site specific approach to address locations with a history of high or severe crashes, and using a systemic approach to proactively address safety by identifying and targeting specific risk factors. This chapter describes how the systemic analysis was applied to the study area.

The project team used the methodology created for the VDOT CSA for CoSS whereby a set of risk reducing templates are provided for intersections and for corridors throughout the study area. Templates applicable to this project are provided in Appendix A. The countermeasures in the templates are grouped into tiers and are applied to the intersections and corridors based upon the presence of systemic risk factors, crash risk, and their Potential for Safety Improvement (PSI). Each of these three factors and how they impact tier selection are described in this chapter. The AASHTO Highway Safety Manual and FHWA systemic methodology guided the analysis and identification of systemic risk factors present throughout the study area. ${ }^{12}$
> - The call-out boxes in this chapter highlight elements related to the focus area risk factor determination.

4.2 Systemic Risk Factor Analysis

The following analysis involves the identification of focus areas and the associated risk factors. The data set used in the analysis includes 242 crashes for the fiveyear period 2012-2016 over 6.6 miles, an average of 7 crashes per year/mile.

4.2.1 Primary Focus Areas

There are two possible types of focus areas in systemic data analysis: focus crash types and focus facility types. With the available robust crash dataset, the analysis was guided by the focus crash types. The following describes which focus areas were selected and what factors were used in that determination

The highest proportion of crashes are rear end followed by roadway departure and angle crash types as shown in Table 4.1. Together these three crash types comprised 75 percent of the total crashes and 84 percent of the severe crashes within the study area. (Note: KAB Crashes are fatal and severe crashes as noted by the KABCO scale: $K=$ fatal crash, $A=$ incapacitating injury, $B=$ nonincapacitating injury, $\mathrm{C}=$ possible injury, and $\mathrm{O}=$ no injury.)

[^1]

Figure 4.1.
Systemic Process.
able 4.1
Focus Crash Types.

Crash Types	All Crashes	$\%$ of Total $(\mathrm{n}=242$	KAB crashes	$\%$ of Total $(\mathrm{n}=\mathbf{4 9}$
Rear End	79	33%	13	27%
Animal	24	10%	0	0%
Motorcyclist	2	1%	1	2%
Angle	39	16%	11	22%
Head On	6	2%	2	4%
Sideswipe	20	8%	1	2%
Fixed Object in Road	1	1%	0	0%
Roadway Departure	63	26%	17	35%
Other	8	3%	4	8%
Total	242	100%	49	100%

4.3 Risk Factor Determination

The following is a description and overview of the risk factor determination for the focus crash types: rear end, angle, and roadway departure crashes. Included with the analysis are callout boxes highlighting elements related to the focus area risk factors.

431 Rear End Crashes

Rear end crashes were the most prevalent crash type with 33 percent of the tota crashes and 27 percent of the severe crashes. There were 79 total rear end crashes of which 13 were severe Table 4.2 presents rear end, angle and total crashes with respect to the intersection type (signalized, unsignalized, or non-intersection).

Almost half (44 percent) of the total rear end crashes and the majority of severe crashes (69 percent) occurred at unsignalized intersection locations. This is almost double the proportion of total crash and severe crashes for all crash types within the study area.

- Rear end crashes are most prevalent at unsignalized intersection locations
-

Table 4.2.

All Crash Types	Total Crashes	$\begin{gathered} \% \text { of Total } \\ (n=242) \end{gathered}$	$\begin{aligned} & \text { KAB } \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \% \text { of Total } \\ (n=49) \end{gathered}$	$\begin{aligned} & \text { Rear } \\ & \text { End } \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \% \text { otal } \\ (\mathrm{n}=79) \end{array} \end{gathered}$	Rear End KAB Crashes	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \text { Total } \\ (\mathrm{n}=13) \end{array} \end{gathered}$	Angle Total Crashes	$\begin{gathered} \text { \% of of } \\ \text { Total } \\ (\mathrm{n}=39) \end{gathered}$	Angle KAB Crashes	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (\mathrm{n}-11) \end{gathered}$
Unsignalized Intersection-Related	68	28\%	16	33\%	35	44\%	9	69\%	10	26\%	4	36\%
Signalized Intersection-Related	61	25\%	8	16\%	24	30\%	1	8\%	19	49\%	3	27\%
Not Intersection-Related	113	47\%	25	51\%	20	25\%	3	23\%	10	26\%	4	36\%
Total	242	100\%	49	100\%	79	100\%	13	100\%	39	100\%	11	100\%

Crashes along the corridor typically occurred during the morning and evening commuting times of 6 to 9 AM (16 percent of total crashes and 20 percent of severe crashes) and 3 to 6 PM (25 percent of total crashes and 22 percent of severe crashes), as shown in Table 4.3. Each of the focus crash types differ in the primary time of day for that crash. Rear end crashes and severe crashes most often occurred during the evening commuting hours of 3 to 6 PM (38 percent of total crashes and 31 percent of severe rear end crashes).

Table 4.3.

Crashes by Time of Day.

This pattern could be due to local traffic patterns and behaviors, such as higher traffic volumes, speeds, vehicle type, distracted driving, or following too closely. Table 4-4 shows rear end crashes by speed limit, indicating that the highest tota number and severe crashes along the corridor occur in the 55 MPH speed limit zone (58 percent of total crashes and 67 percent of severe crashes. There are also considerably more severe rear end crashes on sections of roadway with the higher speed limit of 55 MPH (85 percent). In only 11 percent of the total rear end crashes did the reporting officer determine that the driver was speeding (see Figure 4.2). However, the project team reviewed the extents of the speed limit zone in relation to crashes and believe there may be discrepancy in the posted speed and the speed limit indicated on the crash report form.

Time of Day	All Crashes	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \text { Total } \\ (n=242) \end{array} \end{gathered}$	$\begin{array}{\|l\|l\|} \text { KAB } \\ \text { Crashes } \end{array}$	$\left\lvert\, \begin{gathered} \text { \% of } \\ \text { Total } \\ (n=49) \end{gathered}\right.$	$\begin{aligned} & \text { Rear } \\ & \text { End } \\ & \text { Crashes } \end{aligned}$	$\begin{array}{\|c} \% \text { of } \\ \text { Total } \\ (n=79) \end{array}$	Rear End KAB Crashes	$\left\lvert\, \begin{gathered} \text { \% of } \\ \text { Total } \\ (n=13) \end{gathered}\right.$	Angle Total Crashes	$\begin{gathered} \text { \% of } \\ \text { Total } \\ (\mathrm{n}=39) \end{gathered}$	Angle KAB Crashes	$\begin{array}{\|l\|l} \% \text { of } \\ \text { Total } \\ (n-11) \end{array}$	Roadway Departure Crashes	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (n-63) \end{gathered}$	Roadway Departure KAB Crashes	$\left\lvert\, \begin{gathered} \% \text { of } \\ \text { Total } \\ (\mathrm{n}-17) \end{gathered}\right.$
0 AM TO 3 AM	12	5\%	4	8\%	0	0\%	0	0\%	1	3\%	1	9\%	9	14\%	3	18\%
3 AM TO 6 AM	19	8\%	3	6\%	2	3\%	2	15\%	1	3\%	0	0\%	3	5\%	2	12\%
6 AM TO 9 AM	38	16\%	10	20\%	9	11\%	2	15\%	13	33\%	6	55\%	10	16\%	1	6\%
9 AM TO 12 PM	31	13\%	3	6\%	15	19\%	2	15\%	5	13\%	0	0\%	10	16\%	1	6\%
12 PM TO 3 PM	33	14\%	7	14\%	15	19\%	1	8\%	5	13\%	2	18\%	9	14\%	2	12\%
3 PM TO 6 PM	61	25\%	11	22\%	30	38\%	4	31\%	8	21\%	1	9\%	6	10\%	3	18\%
6 PM TO 9 PM	30	12\%	6	12\%	8	10\%	2	15\%	6	15\%	1	9\%	6	10\%	1	6\%
9 PM TO 12 AM	18	7\%	5	10\%	0	0\%	0	0\%		0\%	0	0\%	10	16\%	4	24\%
TOTAL	242	100\%	49	100\%	79	100\%	13	100\%	39	100\%	11	100\%	63	100\%	17	100\%

Table 4.4
Rear End Crashes by Speed Limit.

Speed Limit	All	$\begin{array}{\|c} \% \\ (n=242) \end{array}$	$\begin{array}{\|l\|l\|} \text { KAB } \\ \text { Crashes } \end{array}$	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (\mathrm{n}=49) \end{gathered}$	$\begin{aligned} & \text { Rear } \\ & \text { End } \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \text { Total } \\ (\mathrm{n}=79) \end{array} \end{gathered}$	Rear End KAB Crashes	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \text { Total } \\ (n=13) \end{array} \end{gathered}$
45	81	33\%	11	22\%	28	35\%	2	15\%
55	141	58\%	33	67\%	46	58\%	11	85\%
Unknown	20	8\%	5	10\%	5	6\%	0	0\%
Total	242	100\%	49	100\%	79	100\%	13	100\%

Heavier vehicles require longer stopping distances and given the high percentage of heavy vehicles along the corridor, the vehicle type may contribute to the high number of rear end crashes. However, the crash analysis shown in Table 4.5 does not support that theory as only five percent of rear end crashes was caused by heavy vehicles

Figure 4.2.
Speeding Determination for Rear End Crashes.

Table 4.5.
Rear End Crashes by Vehicle Type.

Vehicle Type	Rear End Crashes	$\%$ of Total $(\mathrm{n}=79)$
Passenger Car	50	63%
Motorcycle	2	3%
Truck - Passenger Pick-up/SUV	18	23%
Van	5	6%
Truck (2 Axles)	1	1%
Truck (3 Axles or More)	3	4%
Total	79	100%

Table 4.6
Rear End Crashes by Vehicle Driver Actions.

Vehicle Type	Rear End Crashes	$\%$ $(\mathrm{n}=\mathbf{7 9})$
No Improper Action	5	6%
Following Too Close	40	51%
Driver Distraction	4	5%
Improper Parking	2	3%
Exceeded Safe Speed (But Not Speed Limit)	3	4%
Avoiding Other Vehicle	1	1%
Other	8	10%
Fail to Maintain Proper Control	16	20%
Total	79	100%

- The influence of speeding on rear end crashes is unclear.
- Rear end crashes typically involve passenger vehicles and non-commercial trucks.
The action of following too closely led to just over half of rear end crashes.

This rear end crash pattern could also reflect geometric conditions, such as inadequate sight distance or warning of intersections, lack of space for acceleration and deceleration, or inadequate friction. Table 4.7 and Table 4.8 help to assess some of these risks. Consistent with corridor trends, most of the rear end crashes occurred during dry conditions. Half of the intersections in the study area have turn lanes on both the Route 460 eastbound and westbound approaches but just under half (40 percent) do not have any turn lanes on Route 460 . For all 13 intersections, there are a total of 11 left turns and 8 right turn lanes. A signage inventory, sight distance evaluation, and friction assessment were not part of this study.

It is possible that the lack of roadway friction is a factor in dry, rear end crashes. Also, providing turn lanes or acceleration and deceleration lanes would provide separation from vehicles with a large speed differential. The need for additional lanes will be addressed on a site-specific basis (see Chapter 5)

Unsignalized intersection enhancements, such as intersection warning signs and beacons, or larger signs at the intersection, can help to improve driver awareness of the intersection.

- Most rear end crashes occurred during dry conditions.
- Almost half of the intersections do not have turn lanes on Route 460.

4.3.2 Angle Crashes

Angle crashes were the third most prevalent crash type in the study area, but were the second highest crash type at intersections. There were 39 total angle crashes, of which 11 were severe angle crashes. Relative to all other crash types angle crashes comprised 16 percent of all the total crashes and 22 percent of the severe crashes. As shown in Table 4.2, approximately half of the total angle crashes (49\%) occurred at signalized intersection locations, which is considerable higher than for all crash types (25\%).

Angle crashes were the most prevalent at signalized

 intersection locations.Total and severe angle crashes most often occurred during the morning commuting hours of 6 AM to 9 AM (33 percent of total crashes and 55 percen of severe angle crashes)
This pattern could be due to local traffic patterns and behaviors, such as highe traffic volumes, speeds, or drivers in a rush, all of which could result in misjudging adequate gaps in traffic
Most of the angle crashes (41 percent of all crashes and 45 percent of severe crashes) occurred in the portion of the corridor with the lower 45 MPH speed limit. For only 13 percent of angle crashes did the law enforcement officer indicate that the driver was speeding. The project team reviewed the extents of the speed limit zone in relation to crashes and believe there may be discrepancy in the posted speed and the speed limit indicated on the crash report form

Table 4.7.

Speed Limit	All	\% of Total ($\mathrm{n}=242$)	KAB	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \% \text { otal } \\ (n=49) \end{array} \end{gathered}$	$\begin{aligned} & \text { Rear } \\ & \text { End } \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (\mathrm{n}=79) \end{gathered}$	Rear End KAB Crashes	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (\mathrm{n}=13) \end{gathered}$
Dry	185	76\%	36	73\%	61	77\%	11	85\%
Wet	48	20\%	11	22\%	17	22\%	2	15\%
Snowy	3	1\%	1	2\%	1	1\%	0	0\%
Icy	5	2\%		0\%	0	0\%	0	0\%
Water (Standing, Moving)	1	0\%	1	2\%	0	0\%	0	0\%
Total	242	00\%	49	100\%	79	100\%	13	1000

Table 4.8.
Route 460 Turn Lane Summary

Intersection Turn Lane Presence Ron Route 460 Approaches	Number of Intersections	\% of Total $(\mathrm{n}=13)$	Number of Turn Lanes on Route 460		$\%$ of Total $(\mathrm{n}=19)$	
Both WB/EB Approaches	6	50%	Right	8	40%	
One Approach (WB or EB)	2	20%	Left	11	60%	
No Turn Lanes (WB or EB)	5	40%	Total	19		
Total	13	100%				

Table 4.9

Angle Crashes by Speed Limit.

Speed Limit	$\begin{array}{\|c} \text { All } \\ \text { Crashes } \end{array}$	\% of Total ($\mathrm{n}=242$)	$\begin{aligned} & \text { KAB } \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (n=49) \end{gathered}$	$\begin{aligned} & \text { Rear } \\ & \text { End } \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \text { \% of } \\ \text { Total } \\ (n=79) \end{gathered}$	Rear End KAB Crashes	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (n=13) \end{gathered}$
45	81	33\%	11	22\%	16	41\%	5	45\%
55	141	58\%	33	67\%	13	33\%	3	27\%
Unknown	20	8\%	5	10\%	10	26\%	3	27\%
Total	242	100\%	49	100\%	39	100\%	11	100\%

Figure 4.3.
Speeding Determination for Angle Crashes.

Heavier vehicles may have a difficult time finding an acceptable gap in traffic due to their difficulty accelerating. However, as shown in Table 4.10, only five percent of angle crashes were caused by heavy vehicles.
Table 4.11 contains a summary of the drivers actions for angle crashes. Drivers who did not have right-of-way, conducted improper turns, or disregarded the traffic signal were involved in 66 percent of the crashes. As shown in Table 4.12,

Table 4.10.

Angle Crashes by Vehicle Type.

Vehicle Type	Angle Crashes	\% of Total $(\mathrm{n}=39)$
Passenger Car	18	46%
Motorcycle	0	0%
Truck - Passenger Pick-up/SUV	19	49%
Van	0	0%
Truck (2 Axles)	0	0%
Truck (3 Axles or More)	2	5%
Total	39	100%

Table 4.11.
Angle Crashes by Vehicle Driver Actions.

Vehicle Type	Angle Crashes	$\%$ of Total $(\mathrm{n}=39)$
No Improper Action	4	10%
Following Too Close	15	38%
Driver Distraction	1	3%
Improper Parking	7	18%
Exceeded Safe Speed (But Not Speed Limit)	1	3%
Avoiding Other Vehicle	4	10%
Other	4	10%
Fail to Maintain Proper Control	3	8%
Total	39	100%

Table 4.12.
Angle Crashes by Direction of Travel.

Direction	Angle Crashes	$\%$ of Total $(\mathrm{n}=39)$	Angle KAB Crashes	$\%$ of Total $(\mathrm{n}=11)$
East	7	18%	2	18%
West	14	36%	4	36%
North	6	15%	2	18%
South	11	28%	2	18%
Unknown	1	3%	1	9%
Total	39	100%	11	100%

while the east and westbound directions of travel (on Route 460) have much higher traffic volumes, crashes involving vehicles traveling north and south occurred in 43 percent of the angle crashes and 36 percent of the severe angle crashes.
For those crashes where drivers did not have right-of-way, there are several elements that may have contributed to misjudging gaps such as speed, heavy traffic volumes, large vehicles obscuring the view of other on-coming vehicles, and possibly a lack of sufficient protected turn phasing. Improper turns or disregarding the traffic signal could be indicative of other factors such as speed, heavy traffic volumes, lack of intersection awareness and preparation, or signal phasing issues. In addition to the countermeasures identified through the template application shown in Figure 4.5, education and enforcement of the posted speed limit throughout the study area could also help to address speed related crashes.

- Angle crashes are most prevalent during morning commute time of 6 to 9 AM.
- Drivers who did not have right-of-way, conducted improper turns, or disregarded the traffic signal were involved in 66 percent of the crashes.
- North and southbound vehicles accounted for 43 percent of the crashes.
4.3.3 Roadway Departure Crashes

Roadway departure crashes were the most prevalent severe crash type with 26 percent of the total crashes and 35 percent of the severe crashes. There were 63 total roadway departure crashes of which 17 were severe. Table 4.13 presents roadway departure crashes and total crashes with respect to the corridor type (tangent or curve). The majority of the crashes (95 percent of all crashes and 100 percent of the severe crashes) occurred on tangent sections.
The trend of higher percentages of crashes within tangent sections persisted for rear end and angle crash types. However, roadway departure crashes were relatively evenly dispersed throughout the time periods and severe roadway departure crashes primarily occurred at night with 54 percent occurring between the hours of 9 PM to 6 AM.

As shown in Table 4.14, there were more roadway departure crashes in the eastbound direction (36 percent for total crashes to 48 percent for roadway departure), compared to eastbound crashes for all crash types on the corridor. However, the directional split for roadway departure crashes was relatively even (48 percent eastbound and 41 percent westbound)

- The majority of roadway departure crashes occurred during the nighttime hours of 9 PM to 6 AM.
- The roadway departure crash directional split was relatively even for eastbound and westbound travel.

Table 4.13.

Roadway Departure Crashes by Corridor Type.

Corridor Type	Length (Mile - Eastbound)	\% of Total $(\mathrm{n}=6.64)$	Roadway Departure Crashes	$\%$ of Total $(\mathrm{n}=63)$	Crashes/ Mile	Roadway Departure KAB Crashes	\% of Total $(\mathrm{n}=17)$	KAB Crashes/ Mhile
Curve	0.34	5%	3	5%	9	0	0%	0
Tangent	6.30	95%	60	95%	10	17	100%	3
Total	6.64	100%	63	100%	9	17	100%	3

Table 4.14.
Roadway Departure Crashes by Direction of Travel.

Direction of Travel	All Crashes	\% of Total $(\mathrm{n}=242)$	KAB Crashes	$\%$ of Total $(\mathrm{n}=49)$	Roadway Departure Crashes	\% of Total $(\mathrm{n}=63)$	Roadway Departure KAB Crashes	$\%$ of Total $(\mathrm{n}=17)$
East	88	36%	19	39%	30	48%	8	47%
West	106	44%	22	45%	26	41%	8	47%
North	16	7%	3	6%	3	5%	1	6%
South	25	10%	3	6%	3	5%	0	0%
Unknown	7	3%	2	4%	1	2%	0	0%
Total	242	100%	49	100%	63	100%	17	100%

With respect to road conditions, most of the corridor and roadway departurespecific crashes occurred during dry conditions (76 and 70 percent respectively). A comparison of roadway departure crashes to all crash types is shown in Table 4.15. A slightly higher proportion of roadway departure crashes (70 percent for total crashes and 76 percent for severe crashes for roadway departure crash types), compared to all crash types (20 percent for total crashes and 22 percent for severe crashes for all crash types), occurred when the roads were wet.

Table 4.16 provides crashes by vehicle type. Most of the vehicles involved in roadway departure crashes are passenger cars (63 percent). However, roughly double the amount of large commercial trucks are involved in roadway departure crashes compared to all crash types on the corridor (13 percent of roadway departure crashes compared to 7 percent for all crash types).

As shown in Figure 43 , in only 13 percent of the crashes did the officer find that the driver was speeding prior to the crash. Table 4.17 and Table 4.18 provide information on driver's actions at the time of the crash. In most of the roadway departure crashes (60 percent), it was noted that the driver "failed to maintain control". Looking specifically at driver distraction, 68 percent of the total crashes involved driver distraction, but only 8 percent for roadway departure crashes. Driver fatigue was noted in 19 percent of the roadway departure crashes, which comprise almost all driver fatigue crashes along the corridor (92 percent).

Table 4.15

$\begin{gathered} \text { Road } \\ \text { Conditions } \end{gathered}$	Total Crashes	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (\mathrm{n}=242) \end{gathered}$	$\begin{aligned} & \mathrm{KAB} \\ & \text { Crashes } \end{aligned}$	$\begin{gathered} \% \text { of } \\ \text { Total } \\ (n=49) \end{gathered}$	Roadway Departure Crashes	$\begin{gathered} \begin{array}{c} \% \text { of } \\ \text { Total } \\ (n=63) \end{array} \end{gathered}$	Roadway Departure KAB Crashes	$\begin{gathered} \% \text { of } \\ \begin{array}{c} \text { Total } \\ (\mathrm{n}=17) \end{array} \end{gathered}$
Dry	185	76\%	36	73\%	44	70\%	11	65\%
Wet	48	20\%	11	22\%	16	25\%	4	24\%
Snowy	3	1\%	1	2\%	1	2\%	0	0\%
Icy	5	2\%	0	0\%	1	2\%	1	6\%
Water (Standing, Moving)	1	0\%	1	2\%	1	2\%	1	6\%
Total	242	100\%	49	100\%	63	100\%	17	100\%

Table 4.16.
Roadway Crashes by Vehicle Type

Vehicle Type	Total Crashes	\% of Total $(\mathrm{n}=242)$	Roadway Departure Crashes	$\%$ of Total $(\mathrm{n}=63)$
Passenger Car	141	58%	40	63%
Motorcycle	5	2%	0	0%
Truck - Passenger Pick-up/ SUV	64	26%	11	17%
Van	8	3%	2	3%
Truck Tractor (Bobtail - No Trailer)	3	1%	2	3%
Truck (2 Axles)	2	1%	0	0%
Truck (3 Axles or More)	18	7%	8	13%
RV	1	0%	0	0%
Total	242	100%	63	100%

figure 4.4.
Speeding Determination for Roadway Departure Crashes.

Table 4.17.
Roadway Departure Crashes by Vehicle Driver Actions.

Vehicle Type	Roadway Departure Crashes	$\%$ of Total $(\mathrm{n}=63)$
No Improper Action	4	6%
Improper Turn	2	3%
Improper Lane Change	1	2%
Exceeded Safe Limit	2	3%
Driver Distraction	1	2%
Avoiding Other Vehicle	2	3%
Avoiding Animal	4	6%
Avoiding Object In Road	1	2%
Hit and Run	1	2%
Fail to Maintain Proper Control	38	60%
Over Correction	3	5%
Other	4	6%
Total	63	100%

Table 4.18.
Roadway Departure Crashes by Driver Condition.

Driver Distraction	Total Crashes	$\begin{gathered} \text { \% of Total } \\ (\mathrm{n}=242) \end{gathered}$	Roadway Departure Crashes	$\%$ of Roadway Departure Total $(n=63)$	\% of Distraction Type ($\mathrm{n}=\mathrm{varies}$)
Distracted	43	68\%	5	8\%	12\%
Not Distracted	186	295\%	46	73\%	25\%
Driver Fatigue	13	21\%	12	19\%	92\%
Total	242	384\%	63	100\%	26\%

- Most of the vehicles involved in roadway departure crashes are passenger cars; however, twice as many large commercial trucks are involved as compared to all crash types on the corridor.
- Almost all driver fatigue crashes were roadway departure crash types. Fatigue was noted in just under 20 percent of the roadway departure crashes.

Figure 4.5.

Corridor and Intersection Template Locations.

4.4 Systemic Conclusion

Through the systemic analysis specific countermeasures were identified in the risk reducing templates. All Tier 1 countermeasures are to be applied systemically. Specific Tier 2 and Tier 3 countermeasures were chosen based on the crash data and analysis. The application of templates across the corridor is shown in Figure 4.5.

4.5 HSM Spreadsheets

A portion of the safety recommendations were analyzed using the VDOT Extended Highway Safety Manual (HSM) Part C Spreadsheets to predict the changes to crashes on the corridor. This tool only takes into account a portion of the safety countermeasures recommended for the corridor. This method for estimating the benefit of recommended countermeasures is included in the VDOT TOSAM ${ }^{3}$. Additional details about these spreadsheets can be found within the TOSAM and also in the FHWA Integrating the HSM into the Highway Project Development Process ${ }^{4}$. It is anticipated that this project will, on average, experience 52 crashes per year, while a similar project, on average would experience 145.8 crashes per year. A summary of findings from the HSM spreadsheets is included in Figure 7.1 and the full report is provided in Appendix G.

The spreadsheets used to create these summary tables have been provided as a supplement to this study report. The spreadsheets are tools that can be used in planning the implementation of the countermeasures. Considerations for implementation include the most influential techniques in reducing the most severe crash types, the time frame in which countermeasures can be installed and the funding source identified. This study and the spreadsheets provide a basis for an action plan that VDOT can use to improve safety and operations on Route 460.

[^2]

HSM Spreadsheet
Figure 4.6 .

Site Specific Analysis

chapter
 5

Figure 5.1
Site Study Locations.

[^3]
5.1 Introduction

The third approach to addressing safety in the corridor is site specific analysis. In the CSA process, the pre-field review data analysis guided the approach to the field review and assessment. The analysis of a five-year period (2012-2016) of crash data led to the identification of 11 site specific locations due to their crash history and severity, see Figure 5.1. The site specific locations were chosen based on their potential to show reduced average crash frequency or severity. Once the locations were identified, field reviews were conducted in accordance with standard Road Safety Audit (RSA) practices of evaluation and documentation. In addition, a directional video recording of the corridors through the driver's perspective was generated. The 11 locations are listed in Table 5.1.

Table 5.1.
Route 460 Specific Locations.

1.	Northfield Drive
2.	Rob's Drive
3.	Kings Fork Road
4.	Lake Prince Drive
5.	Prudence Road
6.	1,200 Feet East of Gardner Lane
7.	Gardner Lane
8.	Old Myrtle Road
9.	2,200 Feet West of Old Myrtle Road
10.	1,750 Feet East of Ennis Mill Road
11.	1,000 Feet East of Old Suffolk Road

The 11 site specific locations are discussed in full detail on the following pages. For each site, the following information is included:

- Location of site along corridor
- Aerial photo of location with crash locations shown;

Description of existing conditions,

- Crash data;
- Key safety concerns:
- Recommended countermeasures and implementation plan for short-term mid-term and long-term conditions;
- Summarized cost estimate using the templates as shown in Appendix A and other recommended countermeasures listed; and
- Crash mitigation summary for recommended improvements.

Additional details for the cost estimate can be found in Table 5.2 and in Appendix H.

The recommendations are a result of the application of the Templates with the addition of site specific countermeasures. The recommendations are presented in three levels of implementation based on anticipated funding and potential completion. Generally, Tier 1 and Short-Term include countermeasures that are anticipated to be implemented quickly, possibly during maintenance using VDOT crews; Tier 2 and Mid-Term include countermeasures that would require more time to be implemented due to design or funding; and Tier 3 and Long-Term include countermeasures that would require longer lead time due to funding property acquisition, public hearing, and/or longer construction time.

Site Specific Location \#1

5.2 Site Specific Location \#1 Northfield Drive

5.2.1 Existing Conditions

This location is at the signalized, three-legged intersection of Route 460 and Northfield Drive. Surrounding areas are a combination of commercial and residential development to the north and agricultural fields to the south.

All legs of the intersection are paved. On the eastern leg of the intersection, there is a 195 -foot right turn lane with a 150 -foot taper and a 105 -foot left turn lane with a 195 -foot taper with signage denoting the lane for Police Vehicles Only. On the western leg of the intersection there is a 300 -foot left turn lane with a 190foot taper. 300-feet west of the intersection, there is a lateral shift in pavement denoted by black and white reflective pavement edge markers. East and westbound directions of Route 460 have raised, plowable pavement markers installed along lane boundaries.

There is sidewalk located on the north side of Route 460 that is approximately 5 -feet wide. The sidewalk is well maintained and clear of debris. One crosswalk is installed crossing Northfield Drive. The crosswalk is clearly marked and abuts up to ADA accessible ramps with truncated dome warning surfaces.

Narrow, raised, concrete medians that are roughly two to three feet wide, are present on both eastern and western legs of Route 460 . Northfield Drive has an approximately 15 -foot, vegetated median separating north and southbound lanes. The north side of Route 460 has curb and gutter while the southern facing edge of Route 460 has a deteriorated or non-existent shoulder, no curb and gutter, and pavement drop off. Grass along the intersection is well maintained and sight distance for all legs are clear. However, along the southern side of the intersection there is a parallel drainage ditch that is obscured by vegetation.

The intersection has large, clearly visible street signs. There is low illumination throughout intersection, as there is only one mounted street lamp installed on
the northeast corner of Route 460 and Northfield Drive. All intersection signals have black backplates but reflectivity borders are not present. Pavement quality is average throughout the intersection, but pavement markings are worn or deteriorating.

Curb and gutter is present on the north side of the intersection and an edgeline is present on the south side. Nighttime drivers have positive guidance through the edgeline on the southern side of the intersection

5.2.2 Crash Summary

Between 2012 and 2016, nine (9) crashes occurred at Route 460 and Northfield Drive. Sixty-seven percent (6 crashes) resulted in a non-visible injury (crash type C) and 33 percent (3 crashes) resulted in a property damage only crash (crash type O). There were five rear-end crashes, two in the southbound direction, two in the eastbound direction, and one in the westbound direction, with 56 percen (5 crashes) occurring between 3 PM and 6 PM. The remaining crash was deer related. One crash was the result of driving under the influence (DUI). None of the crashes at this location involved commercial vehicles.
5.2.3 Suggested Countermeasures

- Pavement resurfacing - the pavement crack sealing is much more apparent than the pavement markings and as such, draws the driver's attention Resurfacing the road would remove the lines formed by the crack seal Additionally, given the number of rear end crashes, friction may be reduced and could be improved through repaving.
- Enhanced pavement markings - new pavement markings could help to improve visibility of the roadway edge and intersection.
- Reflective border on signal backplates - this will help to enhance conspicuity of the intersection signals.
- Shoulder improvement - shoulders should be widened on the southern side of the intersection to provide a more forgiving roadway and assist with roadway stabilization.
- Safety edge - the edge of the roadway should have a safety edge to help drivers re-enter the roadway, in the event a driver leaves the travel way, and also to help preserve the pavement.
- Additional intersection lighting - the intersection is currently served by one street light illuminating the northwest corner of the intersection. Additional street lights will enhance intersection conspicuity during dark conditions.
- Curb and gutter maintenance - vegetation is encroaching on the curb and gutter, reducing the effectiveness and causing pavement deterioration
- Positive guidance on northern side of intersection - There is positive guidance, in the form of edgeline, for drivers on the southern side of the intersection but not on the northern side. Additional positive guidance, such as edgeline or reflective post mounted delineators would enhance nighttime visibility of the roadside, particularly leading the lateral shift just west of the intersection.

Site Specific Location \#2

5.3 Site Specific Location \#2 Rob's Drive

5.3.1 Existing Conditions

This location is at the signalized, four-legged intersection of Route 460 and Rob's Drive. There is a grade school to the south and a combination of commercial and residential to the north

All legs of the intersection are paved and undivided. Both the eastern and western legs of the intersection have a two-way center left turn lane that converts to a single left turn lane. On the western leg of Route 460, there is a 100 -foot transition to from two-way center turn lane to a 150 -foot left turn lane. The eastern leg of Route 460 has a 70 -foot transition from two-way center turn lane to a 205 -foot single left turn lane.
There are depressions in the roadway, near the curb, at the corners of Route 460 and the southern leg of Rob's Drive which serves as the entrance to Nansemond Suffolk Academy. Standing water was observed in the depressions during the field review. The curb and gutter section is limited to these two corners of the intersection - no other curb or curb and gutter is present at this intersection. Grassy shoulders line the remainder of pavement edges. All intersection signals have black backplates but reflective borders are not present. The intersection has two street lights located on the northwest and southeast corners of Route 460 and Rob's Drive.

Pavement within the legs of the intersection show high wear and moderate deterioration. High amounts of deterioration were identified along turning radiuses between Route 460 and northbound Rob's Drive. Large amounts of crack seal, and the varying difference in pavement and crack seal coloring, is a visual distraction. Pavement markings and edgelines are visible. Edgelines are largely worn due to turning vehicles.

During VHB's field review, one driver commented that changes, made within the last year, to the timing of the intersection, heavily hinders drivers traversing Route 460 from the northern leg of Rob's Drive to the southern leg.

5.3.2 Crash Summary

Between 2012 and 2016, ten (10) crashes occurred at Route 460 and Rob's Drive. Ten percent (1 crash) resulted in ambulatory injury (crash type A), 10 percent (1 crash) resulted in visible injury (crash type B), and 60 percent (6 crashes) resulted crash) resulted in visible injury (crash type B), and 60 percent (6 crashes) resulted
in non-visible injury (crash type C). Twenty percent (2 crashes) resulted in in non-visible injury (crash type C). Twenty percent (2 crashes) resulted in
property damage only (crash type O). There were five rear-end crashes, four in the eastbound direction, and one in the southbound direction. Three angle crashes occurred at this location, as well as one side-swipe crash and one fixed object off road crash. Two of the angle crashes involved drivers on the southern approach, leaving the school property, and one resulted in a serious injury. Sixty percent (6 crashes) occurred between 6 AM and 12 PM. One crash was the result of DUI.

5.3.3 Suggested Countermeasures

- Right turn on red prohibition from minor streets - on the southern approach drivers are misjudging the acceptable gaps in traffic. This could be due to speed, vehicle size, or heavy traffic volumes. Prohibiting right turns on red would require drivers to enter traffic during a protected phase.
- Education - working with the school to educate students, parents, and faculty on local driving risks and safe driving skills could help drivers arrive and leave safety.
- Pavement resurfacing - the pavement crack sealing is much more apparent than the pavement markings and as such, draws the driver's attention. Resurfacing the road would remove the lines formed by the crack seal. Additionally, given the number of rear end crashes, friction may be reduced and could be improved through repaving.
- Enhanced pavement markings - new pavement markings could help to improve visibility of the roadway edge and intersection
- Reflective border on signal backplates - this will help to enhance conspicuity of the intersection signals.
- Drainage (curb, gutter, and pavement) improvements on the southern leg the curb and gutter is inconsistent and depressions in the pavement reduce the effectiveness of stormwater facilities potentially resulting in on-street ponding and reduced friction for drivers.

Site Specific Location \#3

5.4 Site Specific Location \#3 Kings Fork Road

5.4.1 Existing Conditions

This location is at the signalized, paved, four-legged intersection of Route 460 and Kings Fork Road. Surrounding areas are commercial, with a recreational area in the northeast corner.

All legs of this intersection are paved and undivided. The western leg of Route 460 has a 175 -foot left turn lane present with 75 -foot taper. The eastern leg is equipped with a two-way left turn lane that ends with a 70 -foot transition and a 205 -foot single left turn lane. Additionally, there is a 160 -foot right turn lane with a 145 -foot taper on the eastern leg. There are no permissive left turn signal phases on any of the intersection approaches. In the northern leg of Kings Fork Road, a 30 -foot designated right turn lane is present. The southern leg has a single lane for right, left, and traversing traffic.

Curb and gutter is present in the northwest and southwest corners of the intersection. The northwest corner has mountable curb installed and southwest corner has non-mountable curb. A heavy amount of debris can be seen in all curb and gutter sections. Northeast and southeast shoulders show signs of vehicular traffic. Vehicular traffic has caused significant deterioration in the southeast corner. No pedestrian facilities are install at this location.

Large street signs are installed, facilitating wayfinding. All intersection signals have black backplates but are lacking reflective borders. This intersection is illuminated by two mounted street lights. Pavement quality is moderate throughout Route 460 and southern leg of Kings Fork Road. The northern leg of Kings Fork Road has new pavement ending at Route 460. Pavement to gutter transition is not smooth, with the pavement bulging and overlapping the gutter. The edgeline pavement markings on the curb and gutter portions provide positive guidance to drivers, particularly in dark conditions.

Drainage ditches are located along the roadway in the northeast corner of the intersection, along Kings Fork Road, and along the roadway on the southeast
corner of the intersection, along Route 460. Extremely high vegetation can be found in the southwest corner between the intersection and the entrance to ARC3 Gases. Maintained height of vegetation from the gutter ranged upward of 12 to 18 inches. Vegetation is also encroaching on the gutter.

Several sets of tire tracks can be found along the eastbound direction of Route 460. Through observation, it was found that the traffic queue built up quickly in this direction. Horizontal alignment of the road has Route 460 curving up from the south to the intersection with Kings Fork Road. Observation found that sight distance approaching the intersection was limited, especially with the high commercial traffic. Further investigation found that no signal ahead warning sign was present on the approach.

5.4.2 Crash Summary

Between 2012 and 2016, twenty-five (25) crashes occurred at the intersection of Route 460 and Kings Fork Road. Sixteen percent (4 crashes) resulted in visible injury (crash type B), 32 percent (8 crashes) resulted in non visible injury (crash type C), 52 percent (13 crashes) resulted in property damage only (crash type O). Eleven rear ends occurred at this location: four eastbound, four westbound, two southbound and one in the northbound direction. Additionally, eight angle crashes occurred at this location. The remaining crashes were head on, side swipe, and other. Forty-four percent (11 crashes) occurring between 3 PM and 6 PM. None of crashes at this location were the result of DUI.

5.4.3 Suggested Countermeasures

- Curb and gutter improvements:
\diamond Remove debris and vegetation from curb and gutter - the debris and vegetation found in the gutter pan reduce the effectiveness of stormwater remove and can lead to pavement deterioration.
\diamond Remove/smooth pavement transition on the northern leg of the intersection.
- Red light running enforcement - Some drivers have noted concern regarding red light running. Also, given the protected only left turn phasing at the intersection, and the amount of angle crashes, drivers are most likely disregarding the signal.
- Education - Messaging directed at drivers regarding speed and red light running.
- Pavement resurfacing - the pavement crack sealing is much more apparent than the pavement markings and as such, draws the driver's attention Resurfacing the road would remove the lines formed by the crack seal. Additionally, given the number of rear end crashes, friction may be reduced and could be improved through repaving.
- Reflective border on signal backplates - this will help to enhance conspicuity of the intersection signals.
- Advance dynamic signal warning sign on both east and west bound approaches to intersection - this will provide vehicles, particularly heavy vehicles, with advance notice of the red signal at the intersection.

LEGEND

$\rightarrow+$
$\rightarrow+$
\rightarrow
$\rightarrow 0$
$\rightarrow 0$
$\rightarrow+$
$\rightarrow+$
$\rightarrow+$ Rear End Deer
Motorcycle \otimes Other
$\rightarrow 0$ Angle
 fatal

- Head On \qquad
Sideripe-
\rightarrow Fixed Object in Road
- Non-Collision
\leq Fixed Object-OffRoad
Figure 5.4.

Site Specific Location \#4

- Reflective border on signal backplates - this will help to enhance conspicuity of the intersection signals.
- Intersection warning signage - add intersection warning sign on the westbound approach to warn drivers of the upcoming intersection. An existing signal warning sign with beacons is present on the eastbound approach. If rear end crashes persist, future enhancement could include warning beacons or a dynamic red light warning sign
- Speed enforcement - conduct speed enforcement on Route 460 intersection approaches.
- Larger speed limit sign - replace smaller sized 55 MPH speed limit sign, to the west of the intersection, with a larger sign consistent with other speed limit signs within the study area

5.5 Site Specific Location \#4 Lake Prince Drive

5.5.1 Existing Conditions

This location is a signalized, paved, four-legged intersection located at Route 460, Lake Prince Drive and Providence Road. The surrounding area is comprised of agricultural land with a church property in the southwest corner. There is a lot on the northwestern corner of the intersection that appears to be used seasonally as a farmers market.

The eastern leg of Route 460 has a 190-foot left turn lane with 150 -foot taper and a 110 -foot right turn lane with a 170 -foot taper. Along the western leg, there is a 220 -foot left turn lane with a 165 -foot taper. Right turn on red is permitted for both eastern and western legs. Protected left turn signal phasing is present in both the east and westbound directions. Both Lake Prince Drive and Providence Road, the northern and southern legs, respectively, have a single travel lane for all directions. Raised plowable pavement markers are installed along the eastern and western approaches. There are two horizontal curves, located east and west of the intersection. Sight distance along Route 460, from Lake Prince Drive or Providence Road, is clear to those points.

There are no medians within the limits of the intersection. Curb and gutter is present in the northeast and southwest corners of the intersection. Debris and vegetation within the gutter pan was visible. Grassy shoulders are present on the northwest and southeast corners of the intersection.

Wayfinding signage is present throughout intersection. It was observed that the 55 MPH sign just west of this location is noticeably smaller than other signs installed in the vicinity of the intersection and the other speed limit signs throughout the rest of the corridor. There are two pole mounted street lamps for illumination. Pavement quality is in average condition; pavement cracking and deterioration, without the application of crack seal, was noticed throughout. Pavement markings are visible, but are worn and deteriorating. Edgelines show
signs of heavy wearing from vehicular traffic. All intersection signals have black backplates but are lacking reflective borders.

A fixed object, a concrete bollard, was identified in the northeast quadrant.
5.5.2 Crash Summary

Between 2012 and 2016, twelve crashes occurred at the intersection of Route 460 and Lake Prince Drive. Eight percent (1 crash) resulted in visible injury (crash type B), 25 percent (3 crashes) resulted in non-visible injury (crash type C), and 67 percent (8 crashes) resulted in property damage only (crash type O). Fifty percent (6 crashes) were angle crashes and 25 percent (3 crashes) were rear ends. All rear end crashes occurred in the westbound direction. Three of the six angle crashes involved left turning vehicles; two of those left-turning angle crashes were from left turning vehicles from the southern leg of the intersection. The remaining crashes were side swipe and fixed object off road. Fifty percent (6 crashes) occurred between the hours of 12 PM and 6 PM. One crash was the result of a occur
DUI.
5.5.3 Suggested Countermeasure

- Remove concrete bollard - the concrete bollard on the northeast quadrant of the intersection should be removed if possible. If removal is not possible then an object marker should be installed.
- Remove debris and vegetation from curb and gutter - the debris and vegetation found in the gutter pan reduce the effectiveness of stormwater remove and can lead to pavement deterioration
- Pavement resurfacing - the pavement crack sealing is much more apparen than the pavement markings and as such, draws the driver's attention Resurfacing the road would remove the lines formed by the crack seal. Additionally, given the number of rear end crashes, friction may be reduced and could be improved through repaving

Site Specific Location \#5

5.6 Site Specific Location \#5 Prudence Road

5.6.1 Existing Conditions

This location is the three-legged, unsignalized intersection of Route 460 and Prudence Road. The surrounding area on the northern side of Route 460 is heavily forested. The southern side is commercial, institutional, and church property.
All legs of this intersection are paved. The western leg of Route 460 has a single 115 -foot right turn lane, with a 130 -foot taper, on to Prudence Road. This intersection is void of any other turn lanes. Sight distance is clear throughout this location. A centerline rumble strip and raised plowable pavement markers are present along this stretch of Route 460. The outer travel lanes at this location are directly adjacent to narrow grassed shoulders. Little to no recovery area is provided between pavement edge and stormwater ditches.

Minimal signage can be seen at this location. Object markers are damaged or missing at all junctions of the drainage ditches and piping. One pole mounted street light is set far off from intersection, on the other side of the drainage ditch. Pavement of Route 460 and the apron of Prudence Road appear to be in good condition. However, heavy deterioration can be identified throughout the Prudence Road approach to the start of the paved apron. During the field review, ponding water was noted along the edge of Prudence Road. Pavement markings at this location are worn, cracking and in some portions, deteriorated. Outside the limits of the intersection, all four "SCHOOL" lane lettering is heavily worn.

All stormwater facilities show erosion and debris build up. There was significant deterioration of the stormwater facilities on the southwestern and southeastern corners of the intersection. Draining water appears to have washed away the dirt around the headwall at the drainage culvert on the southwestern quadrant, causing a hole to form between the headwall and the edge of the roadway

5.6.2 Crash Summary

Between 2012 and 2016, twenty-two (22) crashes occurred at the intersection of Route 460 and Prudence Road. Nine percent (2 crashes) resulted in visible injury (crash type B), 55 percent (12 crashes) resulted in non visible injury (crash type C) and 36 percent (8 crashes) resulted in property damage only (crash type O). Fiftyfive percent (12 crashes) were rear end crashes, six crashes in the eastbound direction, five in the westbound direction, and one in the northbound direction. Of the remaining 45 percent (10 crashes) four were angle crashes, two were side swipe crashes and three were fixed object off road crashes. Twenty-three percent (5 crashes) occurred during rainy weather conditions, while the other 77 percent occurred with no adverse weather conditions. Thirty-two percent of crashes occurred between 9 AM and 12 PM
5.6.3 Suggested Countermeasures

- Pavement resurfacing on Prudence Road - the Prudence Road approach is significantly deteriorated and provides and unstable surface for drivers. Resurfacing could also help to improve drainage on Prudence Road.
- Enhanced pavement markings - new pavement markings, including the "SCHOOL" warning markings could help to improve visibility of the roadway edge and intersection.
- Drainage ditch improvements - the drainage ditch, and facilities on both the southeastern and southwestern corners of the intersection, are significantly deteriorating and should be repaired, regraded, and reseeded to ensure proper function, roadway stability, and remove the steep roadside drop-off that poses a risk to drivers who may leave the roadway.
- Protection/warning of steep roadside ditch - guardrail should be considered in the vicinity of the intersection, to protect drivers from the steep drainage ditch on the southern side of the roadway. If guardrail is not installed, or until it can be installed, object marker signs should be installed along the ditch to warn drivers.
- Intersection warning signage - add intersection warning sign on the westbound, and possibly eastbound, approach to warn drivers of the upcoming intersection. An existing sign warning drivers to watch for turning vehicles, with a 45 MPH placard, is present on the westbound approach, prior to the "SCHOOL" pavement markings. An additional sign, closer to the intersection, warning of the intersection could supplement the existing warning sign. If rear end crashes persist, future enhancement could include warning beacons or a dynamic beacons warning of sidestreet traffic in combination with the warning sign.
- Turn lane/acceleration lane - Adding a left turn on the westbound approach, along with a complimentary acceleration lane for vehicles turning left from the school onto westbound Route 460, would remove slower moving traffic from the through traffic.

Site Specific Location \#6

5.7 Site Specific Location \#6 1,200 Feet East of

 Gardner Lane
5.7.1 Existing Conditions

This location is the segment of Route 460 located approximately 1200 feet east of Gardner Lane. The surrounding area is a mixture of agriculture and residential land. Sight distance throughout the segment is clear.
Both the eastern and western legs of Route 460 are paved. On the southern side of Route 460, one residential property, with two dirt apron entrances, is present adjacent to the intersection. Alternatively, a paved apron is located on the northside of Route 460 , leading to two private residences. The remainder of the surrounding area is agricultural land. No turn or deceleration lanes are present at this location.

Route 460 is undivided with a rumble strip and raised plowable pavement markers A narrow gravel shoulder is present on the southern edge of the intersection with a drop off from the pavement to the gravel and another into ditch. The northern edge has little to no shoulders.

There are no direction or wayfinding signs at this location. Pavement and pavement markings along Route 460 are in good condition but the shoulder. is deteriorating. There is no lighting identified at this location.

5.7.2 Crash Summary

Between 2012 and 2016, eight (8) crashes occurred at the segment of Route 460 located approximately 1200 feet east of Gardner Lane. Thirteen percent (1 crash) resulted in fatality (crash type K), 25 percent (2 crashes) resulted in visible injury (crash type B), 25 percent (2 crashes) resulted in non-injury (crash type C), and the remaining 37 percent (3 crashes) were property damage only (crash type 0). At this location, two rear end crashes occurred in the westbound direction, one motorcyclist crash occurred in the southbound direction, one angle crash, one
non-collision, one deer collision, and two fixed object off road crashes. Thirtyseven percent of crashes occurred during the hours of 6 AM and 9AM. Sixty-two percent of crashes occurred in the months of April, May, and June

5.7.3 Suggested Countermeasures

- Pave driveway aprons - paving driveway aprons will help to keep debris off the roadway and maintain pavement quality.
- Shoulder widening - providing a more forgiving roadway would allow space for to recover from unexpected roadway conditions or leaving the travel lane.

Site Specific Location \#7

5.8 Site Specific Location \#7 Gardner Lane

5.8.1 Existing Conditions

This location is the three-legged, unsignalized intersection of Route 460 and Gardner Lane. The surrounding area is comprised of agriculture and residential land.

All intersection approaches are paved; however, on the southside of Route 460, two dirt aprons are present to access the residential property located adjacent to the intersection. No turn or deceleration lanes are present at this location. Sight distance around the intersection is clear.
Route 460 is undivided with a rumble strip and raised plowable pavement markers. A small, approximately 3 -foot by 8 -foot, concrete median is located in the center of Gardner Lane and is the placeholder of a single stop sign. There were raised pavement markers on the stop sign island; however, three of five raised pavement markers are missing and the remaining markers are broken. A gravel shoulder is present on the southern edge of the intersection with mmediate drop off into a drainage ditch. Other sections of this location have little to no shoulders. The southern stormwater ditch is in good condition.

Within the intersection, one stop sign is installed on the Gardner Lane approach and one pole mounted street light is installed on the southern edge. No other direction or wayfinding signs were observed. Pavement and pavement markings along Route 460 are in good condition. Roadway and shoulder deterioration was observed, as well as a lack of pavement markings, including stop bar, on Gardner Lane. Edgelines were not present at the corner radii in either the northeast or northwest corners of the intersection

5.8.2 Crash Summary

Between 2012 and 2016, twelve (12) crashes occurred at the intersection of Route 460 and Gardner Lane. Twenty-five percent (2 crashes) resulted in visible injury (crash type B), 33 percent (4 crashes) resulted in non-visible injury (crash type C), and 42 percent (5 crashes) resulted in property damage only (crash type O). Forty-two percent of crashes were rear end, two eastbound and three in the westbound direction. Additionally, twenty-five percent of crashes were angle crashes. The angle crashes all involved left-turning vehicles, two turning angle crashes. The angle crashes all involved left-turning vehicles, two turning eastbound Route 460 onto Gardner Lane. The remain thirty-three percent of crashes were side swipe, fixed object and deer related crashes. Fifty percent of crashes occurred during the hours of 6 AM and 9AM.
5.8.3 Suggested Countermeasures

- Realign intersection - Gardner Lane intersects Route 460 at a skewed angle, restricting sight distance of oncoming traffic and allowing for high speed turns onto Gardner Lane
- Improve or remove island with stop sign on Gardner Lane
- Provide turning lanes and acceleration lanes for traffic onto and off of Garner Lane.
- Speed enforcement in vicinity of intersection.

Site Specific Location \#8

5.9 Site Specific Location \#8 Old Myrtle Road

5.9.1 Existing Conditions

This location is the unsignalized, four-legged intersection of Route 460 and Old Myrtle Road. The surrounding area is a combination of agricultural and heavily forested land.

Route 460, in both the eastern and western legs, and the southern leg of Old Myrtle Road are paved. The northern leg of the intersection is gravel, with a dirt pull off just west of the intersection. The Southern leg of Old Myrtle Road creates a skewed intersection. There is a 135 -foot right turn lane with a $155-$ foot taper located along the eastern leg of Route 460 . Line of sight is hindered by vegetation, signs, and other fixed objects along Route 460.

Curb and gutter is not present at this location. Gravel and grass shoulders are present, albeit narrow, resulting in little to no recovery area. Deep stormwater ditches runs parallel to both sides of Route 460.

Good wayfinding signs are present throughout intersection. One pole mounted street light was identified at this location. Heavy dump truck traffic was observed on southbound Old Myrtle Road to and from commercial business. Despite some pitting in the right turn lane, overall the pavement on Route 460 is in good condition. All pavement edges are showing signs of deterioration and cracking. Between pavement edge and dirt pull off, pavement drop off was noticeable. Pavement markings are visible, but show signs on wearing and deterioration. A centerline rumble strip is present, as well as raised plowable pavement markers.
5.9.2 Crash Summary

Between 2012 and 2016, twenty-eight (28) crashes occurred at the intersection of Route 460 and Old Myrtle Road. Four percent (1 crash) resulted in fatality (crash type K), 11 percent (3 crashes) resulted in ambulatory injury (crash type A), 21 percent (6 crashes) resulted in visible injury (crash type B), 29 percent (8
crashes) resulted in non-injury (crash type C), and the remaining 36 percent (10 crashes) were property damage only (crash type O). Thirteen rear end crashes accounted for forty-six percent of crashes at this location, six in the eastbound directions and seven in the westbound direction. Fourteen percent of crashes were fixed object off road. Eleven percent accounted for deer related crashes and an additional eleven percent were categorized as other crashes. Seven percent were angle crashes, and the remaining twelve percent were a motorcycle crash, a head on crash and a non-collision. Thirty-nine percent of crashe occurred during the hours of 3 PM and 6 PM . One crash was the result of a DUI.
5.9.3 Suggested Countermeasures

Pave driveway aprons - paving driveway aprons will help to keep debris off the roadway and maintain pavement quality.

- Intersection warning signs in both east/westbound directions - may want to consider installing dynamic warning signs for both Old Myrtle Road and the private driveway given the high number of crashes.
- Add turn/acceleration lanes:

Add left turn lane and left/right turn receiving lanes (from Old Myrtle Road and private driveway in westbound direction).
\diamond Add left and right turn and acceleration lanes in eastbound direction.

Site Specific Location \#9

5.10 Site Specific Location \#9 2,200 Feet West of

 Old Myrtle Road5.10.1 Existing Conditions

This location is a segment of Route 460, located 2,200 feet west of Old Myrtle Road. Surrounding area is a combination of residential and forested land. Heavy vegetation is found along the northern side of Route 460 .

The four-lane, undivided highway is paved, with dirt aprons leading to residential land. There are no turn lanes present.

A centerline rumble strip is installed along this segment. Steep sloped embankments line both sides of Route 460 and little to no recovery area is available between pavement edge and stormwater ditch.

Pavement along Route 460 is in good condition. Pavement markings, including edgelines, are visible but are deteriorating and cracking. Raised plowable pavement markers are installed along centerline and lane markings. No street lights were observed along this corridor section.
Mailboxes, trees and other fixed objects are present on both sides of Route 460.

5.10.2 Crash Summary

Between 2012 and 2016, five (5) crashes occurred at the segment of Route 460 and 2200 ft West of Old Myrtle Road. Twenty percent (1 crash) resulted in a fatality (crash type K), 20 percent (1 crash) resulted in a visible injury (crash type B), 40 percent (2 crashes) resulted in non-visible injury (crash type C), and the remaining 20 percent (1 crash) resulted in property damage only (crash type O). At this location, one crash was a rear end in the westbound direction, one crash was an angle crash, and three crashes were fixed object off road, one in the westbound direction and two in the eastbound direction. Sixty percent of rashes at this location was due to failure to maintain proper control
5.10.3 Suggested Countermeasures

- Pave driveway aprons - paving driveway aprons will help to keep debris off the roadway and maintain pavement quality.
- Shoulder widening - providing a more forgiving roadway would allow space for to recover from unexpected roadway conditions or leaving the travel lane.

Site Specific Location \#10

5.11 Site Specific Location \#10 1,750 Feet East of

 Ennis Mill Road
5.11.1 Existing Conditions

This location is a segment of Route 460 located 1,750 feet east of Ennis Mill Road. It is an undivided 4 -lane segment with turn lanes. Both the eastern and western legs of Route 460 are paved while the adjoining pull-off is a gravel access to a vacant commercial building. The area surrounding this location is a mixture of residential and agricultural land. Segment sight distance is fine in both directions. Poles and mailboxes both line Route 460.
There are no medians or curb and gutters along this portion of the corridor. A centerline rumble strip is installed along the centerline, separating east and westbound traffic. This segment is lined with little to no shoulders. Existing shoulders have drop-offs to gravel and stormwater ditches. The transition from pavement edge to drainage ditches are steep and eroded.

Wayfinding signs are not installed along this segment and the existing 55 MPH sign was observed to be smaller than other signs. The pavement is in average condition and pavement marking cracking and wear is evident. Raised paved pavement markers are installed along this stretch of Route 460. One street lamp is installed, but it is for business use.

5.11.2 Crash Summary

Between 2012 and 2016, seven (7) crashes occurred at the segment of Route 460 located 1750ft East of Ennis Mill Road. Fourteen percent (1 crash) resulted in a fatality (crash type K), 14 percent (1 crash) resulted in visible injury (crash type B), 29 percent (2 crashes) resulted in non-visible injury (crash type C), and remaining 43 percent (3 crashes) resulted in property damage only (crash type O). Of the seven crashes at this location, two were rear end crashes, one in each the eastbound and westbound directions, two crashes were side swipe crashes, one in each the eastbound and westbound directions. The remaining three crashes that occurred at this location were a deer-related crash, a fixed object off road and a crash categorized as other. The remain 58 percent (four crashes) were due to failure to maintain proper control. Seventy-two percent (5 crashes) occurred during no adverse weather conditions, while 14 percent (1 crash) occurred during the rain, and fourteen percent (1 crash) occurred in misty weather. Fifty-eight percent (4 crashes) occurred during the hours 3 PM and 6 PM. Seventy-two percent of crashes occurred with in the months of October, November and December.

5.11.3 Suggested Countermeasures

- Treatments to allow residents to enter/exit road:
\diamond Access road to combine driveway access points onto Route 460.
\checkmark Acceleration/deceleration lanes or a two way left turn lane
\diamond Speed enforcement to ensure that drivers have adequate time to see and react to entering vehicles and to also provide sufficient gaps for drivers pulling out of the driveways.

Site Specific Location \#11

5.12 Site Specific Location \#11 1,000 Feet East of

 Old Suffolk Road
5.12.1 Existing Conditions

This location is an undivided segment of Route 460 located 1,000 feet east of Old Suffolk Road. The area surrounding this location is predominately agricultural crop land divided by two gravel driveways. Sight distance along this segment is clear, with the exception of mailboxes and utility poles.
This location is paved along the eastern and western legs, with three dirt aprons, two on the southern side and one on the northern side. The dirt aprons are not located across from each other. No turn lanes are located along this segment.
This segment contains a pavement marking transition from a double yellow line, with a centerline rumble strip, to a traversable median. A centerline rumble strip is also installed. Raised plowable pavement markers installed throughout the segment.

Little to no shoulders or recovery area are present at this location. There is a steep transition from edge of pavement into stormwater collection ditches. Overgrown vegetation, debris, and build-up can be seen along entire length of ditch and the reinforced concrete piping is blocked or clogged. Two of the entry points to Route 460 are obscured by overgrown vegetation and may lead to unexpected entries into the roadway.

No advanced warning or wayfinding signs are installed within this segment. Additionally, no street lighting was visible in this segment. Pavement markings are in acceptable condition and visible; however, wear and heavy cracking can be observed on edgelines. Pavement appears to be in good condition.

Standing water was observed during and after all rainfall events. Both sides of the roadway ditches were full of sediment and vegetation. Stormwater drainage pipes were 75 percent obstructed during VHB's field review, potentially limiting effective water flow and drainage.

5.12.2 Crash Summary

Between 2012 and 2016, five (5) crashes occurred at the segment of Route 460 and 1,000 feet east of Old Suffolk Road (City Route 636). Forty percent (2 crashes) resulted in an ambulatory injury (crash type A), 40 percent (2 crashes) resulted in visible injury (crash type B), and the remaining 20 percent (1 crash) resulted in property damage only (crash type O). The five crashes that occurred at this ocation were a westbound rear end, a westbound sideswipe, a non-collision, a fixed object off road, and a crash categorized as other. Forty percent of crashes were caused by failure to maintain proper control. One crash occurred during rain, while the remaining crashes occurred during no adverse weather conditions. Sixty percent of crashes occurred during the months of April, May, and June.
5.12.3 Suggested Countermeasures

- Treatments to allow residents to enter/exit road:
\checkmark Acceleration/deceleration lanes or a two-way left turn lane.
\diamond Speed enforcement to ensure that drivers have adequate time to see and react to entering vehicles and to also provide sufficient gaps for drivers pulling out of the driveways.
\diamond Trim vegetation to increase visibility of oncoming vehicles.
- Clear vegetation from drainage ditches to promote proper drainage and maintain roadway stability.

Table 5.2.

		Location 1	Location 2	Location 3	Location 4	Location 5	Location 6	Location 7	Location 8	Location 9	Location 10	Location 11
$\stackrel{\rightharpoonup}{\text { Io }}$	Signage		\$803		\$503							
	Pavement Markings	\$11,909	\$14,006	\$13,522	\$19,612	\$7,541						
	Signal	\$792	\$792	\$792	\$792							
	Other	\$166	\$166	\$166	\$166	\$166	\$166	\$166	\$166	\$332	\$166	\$166
	Total	\$12,867	\$15,767	\$14,480	\$21,073	\$7,707	\$166	\$166	\$166	\$332	\$166	\$166
$\stackrel{N}{\text { No }}$	Signage	\$500	\$660	\$660	\$660	\$660	\$660	\$660	\$660	\$660	\$660	\$660
	Pavement Markings	\$1,016	\$964	\$871	\$554	\$7,541						
	Signal			\$2,600	\$2,600							
	Other											
	Total	\$1,516	\$1,624	\$4,131	\$3,814	\$8,201	\$660	\$660	\$660	\$660	\$660	\$660
$\begin{aligned} & \text { m } \\ & \stackrel{\text { ºn }}{=} \end{aligned}$	Signage			\$7,920	\$7,920	\$7,920			\$7,920			
	Pavement Markings					\$832						
	Signal											
	Other			\$15,000	\$600			\$5,280				
	Mill and Overlay*	\$562,800	\$609,000	\$504,000	\$634,200	\$168,000						
	Install Turn Lane(s)					\$179,000		\$236,000	\$358,000			
	Install Acceleration Lane(s)					\$203,000		\$203,000	\$507,500		\$812,000	\$406,000
	Pave Driveway Apron						\$6,000		\$23,000	\$12,000		
	Roadway Lighting	\$20,000				\$20,000						
	Widen Shoulder \& Add Guardrail					\$52,026						
	Widen Shoulder	\$52,034					\$104,068			\$104,068		
	Realign Intersection							\$154,532				
	Total	\$634,834	\$609,000	\$526,920	\$642,720	\$630,778	\$110,068	\$598,812	\$896,420	\$116,068	\$812,000	\$406,000

Note: 1) Systemic improvements from the templates are not included separately in this estimate. They are accounted for in the systemic cost estimate
2) Right of way and utility relocations are not included in these estimates
3) Full depth pavement replacement may be necessary, but is not included in the cost
*Does not include new pavement markings - those are accounted for above in Tier 1 and Tier 2 .

Arterial Preservation and Emergency Evacuation

chapter
6

6.1 Introduction

The vision for Route 460 is to provide safe and reliable mobility along the corridor. VDOT's new program, the Arterial Preservation Program, ties directly to that vision. While the need for this project was identified prior to the release of VDOT's program, this section intends to touch on the overarching principals of the program and how they can be tied to Route 460 .
Additionally, mobility during emergency situations is key to mobility and safety of the public, especially in coastal areas that are prone to hurricanes and flooding. As part of this study, a qualitative evaluation of Route 460 as a possible evacuation route was conducted. The details and summary are presented later in this section.

6.2 Arterial Preservation

VDOT developed an Arterial Preservation Program to preserve and enhance the mobility and safety along critical transportation corridors within the Commonwealth. The main objective of this program is to establish alternative, innovative transportation solutions and strategies to corridor treatments to increase capacity as a substitute for traditional widening projects. The Route 460 corridor has been identified as a Mobility Preservation Segment (MPS) by VDOT and is pending adoption into VTrans2040 by the Commonwealth Transportation Board (CTB).
A MPS has been defined, by VDOT, as "a segment of arterial roadway outside of an urban area, with a population of 50,000 or more, that serves as a long-distance mobility need where no parallel freeway route exists." The major goal for Route 460 , as an MPS, is to minimize traffic delays, especially at access points.

6.3 Route 460 Corridor Preservation

A systemic field review and a traditional site-specific field review were conducted on the Route 460 corridor as part of this study. This review process was used to identify and collect roadway features, right-of-way/clear zone restrictions, roadside observations, traffic control information and intersection design. In addition, existing studies, plans, policies and guidelines were reviewed to provide a greater understanding of the corridor, while assessing safety and operational needs.

Operational analysis was conducted as part of this study. The primary goal is to increase capacity and reduce delay along the mainline, Route 460 . Through proposed signal timing and phasing improvements such as adding the flashing yellow arrow signals at select intersection, flow along Route 460 may be increased while delay decreases.
In line with that, a detailed evaluation of the intersection of Prudence Road and Route 460 intersection was evaluated for an innovative intersection design utilizing VDOT's Junction Screening Tool (VJUST). The results of this analysis will be included in the final study.

6.4 Access Management

Access management supports corridor preservations and is key to improvement of mobility and safety along the Route 460 corridor. While access management was not specifically evaluated along the entire Route 460 corridor as part of this study, any new access points should be closely evaluated for the impact to the mainline as future development occurs. VDOT provides guidance on the spacing, design, and control of new access points that should be utilized when making decisions on future access points or evaluating existing access point consolidation.

6.5 Evacuation Route Qualitative Evaluation

Evacuation routes are planned and analyzed for viability during natural or manmade disasters. Routes should be considered based on the roadway's ease of restoration, functional service, and strategic location. Potential problems such as bottlenecks, barriers and scheduled work zones should be identified and analyzed in advance to ensure sufficient egress is provided within the affected areas.

On June 1, 2017, Virginia launched new tiered evacuation zones for the coastal areas throughout Hampton Roads, the Northern Neck, Middle Peninsula and Eastern Shore. These zones are designated letters A through D and provide residents with a better understanding of whether they should evacuate in an emergency based on the nature of the event. This new system has the potential to reduce traffic congestion, promote increased highway safety, and lessen overcrowding at storm shelters throughout Virginia's coastal region.

The study area along the Route 460 corridor resides in Isle of Wight County and the City of Suffolk. Currently, Route 460 westbound operates as a two-lane evacuation route for residents on the southside of Interstate 264. Interstate 64 is the only route with a contra-flow lane reversal plan as stated in the Virginia Hurricane Preparedness Guide. Due to the number of uncontrolled access points and driveways along Route 460, a one-way contra-flow reversal evacuation route is not recommended along this route.

One of the constraints to Route 460 serving as an evacuation route is that it has minimal shoulders and a lack of pull-off areas along the corridor. The lack of space prohibits vehicles from pulling off the roadway and does not allow emergency vehicles access if the roadway becomes congested. Providing a wide shoulder on the westbound direction would provide greater emergency vehicle accessibility. Additionally, providing intermittent pull-off areas would get broken down vehicles out of the road and provide more capacity. Those pull-off areas could also be used during non-emergency times for speed enforcement pulloffs.

Drainage issues have been identified along the Route 460 corridor. Drainage ditches are located directly adjacent to the roadway, potentially creating a flooding hazard during emergency evacuations. Geometric/drainage alternations should be made to reduce pooling and water spread to promote safer trave through the corridor. Drainage improvements, such as vegetation trimming, are proposed as part of the site-specific recommendations.

Long Term Improvements

chapter 7

The objective of this study is to identify small-achievable spot projects for improvements to the Route 460 corridor, from the western limits of the Town of Windsor to approximately 1,500 feet west of the Route 460 and Route 58 interchange. The spot projects will address safety and operational deficiencies while preserving the corridor as a primary arterial and emergency evacuation route. Based on the results of the corridor evaluation and the public comments received, it was clear that long-term substantial changes were needed to truly address safety and traffic flow along the corridor. Three alternative typical sections were evaluated to address the geometric deficiencies along the current roadway alignment. The alternatives are anticipated to reduce the number, and severity, of crashes while increasing mobility along the corridor. Each alternative builds on the previous one, providing additional safety and operational benefits while requiring additional investment for construction. For each alternative, a description of the anticipated improvements, the benefits it will provide, and a conceptual cost, are provided in this section and are shown in Figure 7.1. Details on the planning level costs are provided in Appendix I.

7.1 Alternative 1

This alternative includes the addition of wide shoulders throughout the entire study corridor. Providing shoulders is the lowest cost alternative we evaluated, providing many important safety and operational functions while minimizing right-of-way needs.

- Shoulders provide space for errant vehicles that have left the travel lane, increasing the chance for recovery for run off the road crashes.
- Shoulders provide space for temporary storage of disabled vehicles, reducing accident related lane closures, which contribute to severe congestion, and associated safety problems on high volume roadways.
- Shoulders increase driver comfort, which can improve capacity
- Shoulders accommodate bicyclists, providing them with separation from vehicle traffic and reduce risky passing maneuvers from motor vehicles traveling at higher speeds.
- Shoulders may be used by pedestrians.
- Shoulders help preserve the integrity of the roadway edge
- Shoulders provide space for enforcement activities.

This alternative provides 8 -foot-wide shoulders, along the outside edge of the roadway, consisting of 6 -inches of asphalt paving over 10 -inches of aggregate base. This alternative does not include any change to the existing lane width, nor does it include milling of the adjacent lane. Therefore, it will have the least amount of impact to the traveling public during construction of all the alternatives. Alternative 1 also has the least improvement to safety and operational efficiencies.

Alternative 1 - Conceptual Cost Estimate

The conceptual cost estimate is adjusted for inflation to construction year 2024, and includes estimated private utility relocation fees, and preliminary engineering
and construction engineering services. This estimate does not include right-ofway costs.
, Isle of Wight County segment: encompasses an 8,040 foot stretch of Route 460 from Lovers Lane to the City of Suffolk line and is estimated to cost \$6,060,000.

- City of Suffolk segment: encompasses a 25,580 foot stretch of Route 460 from the Suffolk City line to Northfield Drive and is estimated to cost \$25,620,000.

7.2 Alternative 2

This alternative includes the addition of 8 -foot-wide shoulders through the corridor, as described in Alternative 1, with the addition of a median barrier and narrow inner shoulder along the edge of the travel lanes. A median barrier provides additional safety and operational benefits over those discussed in Alternative 1.

- Median barriers physically separate opposing traffic, reducing highly destructive and often fatal, head on collisions.
- Median barriers control access at intersections by limiting turning options, improving traffic flow and reducing collisions by allowing certain turning movements only at locations where sight distance is improved, or crossing treatments have been provided.

This alternative provides 8 -foot-wide shoulders, along the outside edge of the roadway, consisting of 6 -inches of asphalt paving over 10 -inches of aggregate base. Ten feet of separation will be provided between each direction of travel, with a 2 -foot-wide concrete median barrier in the center. To incorporate this separation and median barrier, the roadway would need to be widened approximately 5 feet in both directions. The affected travel lane area will be constructed with 9 -inches of asphalt over 12 -inches of aggregate base.
This alternative does not include any change to the existing lane width, nor does it include milling of the adjacent lane.

Alternative 2 - Conceptual Cost Estimate

The conceptual cost estimate is adjusted for inflation to construction year 2024, and includes estimated private utility relocation fees, and preliminary engineering and construction engineering services. This estimate does not include right-ofway costs.

- Isle of Wight County segment: encompasses an 8,040 foot stretch of Route 460 from Lovers Lane to the City of Suffolk line and is estimated to cost $\$ 11,570,000$.
- City of Suffolk segment: encompasses a 25,580 foot stretch of Route 460 from the Suffolk City line to Northfield Drive and is estimated to cost \$41,490,000.

7.3 Alternative 3

This alternative provides complete reconstruction of the roadway, wider travel lanes, a 40 -foot depressed median and an 8 -foot-wide outside shoulder. In addition to the safety and access management improvements provided in Alternative 2, this option provides some increased operational, safety, aesthetic and environmental benefits.

- Depressed median provides a recovery area for errant vehicles leaving the roadway along the inside edge of the traveled way
- Depressed median provides a refuge space for turning vehicles allowing for a two-stage left turn by allowing the driver to focus on one direction of opposing vehicles at a time
- Trees, or other landscaping features, may be provided in the median space
- The wide median space retains and filters stormwater, reducing water on the roadway and reducing the impact to nearby water ways.
- 12-foot lanes provide additional comfort for drivers, especially truck traffic
- Reconstructed lanes will provide a smooth driving surface.
- Wide median widths provide space for future roadway widening, addition of turn lanes, additional lighting, and other treatments requiring additional roadway right-of-way.
This alternative is the most expensive alternative, but it provides the most flexibility to mitigate issues in the future as the corridor grows, and volumes increase

Alternative 3 - Conceptual Cost Estimate

The conceptual cost estimate is adjusted for inflation for construction year 2024 and includes estimated private utility relocation fees and preliminary engineering and construction engineering services. This estimate does not include right-ofway costs.

- Isle of Wight County segment: encompasses an 8,040 foot stretch of Route 460 from Lovers Lane to the City of Suffolk line and is estimated to cost \$21,310,000.
- City of Suffolk segment: encompasses a 25,580 foot stretch of Route 460 from the Suffolk City line to Northfield Drive and is estimated to cost \$62,840,000.

Recommendations

chapter
 8

8.1 Introduction and Methodology

The goal of the study was to provide a set of recommendations for operational, safety, and arterial preservation and evacuation improvement. In order to achieve that goal, the Route 460 Safety and Operations Study provided a comprehensive evaluation the Route 460 corridor with the purpose of understanding operational and safety conditions, within the context of arterial preservation and evacuation. The outcome of these evaluations is a series of recommended treatments which have proven operational and safety benefits and address existing, short-term, and long-term corridor needs.

8.1.1 Operational Recommendations

The operational analysis included identification and study of specific intersections throughout the study area; including an analysis of existing 2040 No Build and Build conditions. This analysis was comprised of several elements, including the collection of traffic volumes and subsequent operational analysis of both signalized and unsignalized intersections. One signal warrant screening was also conducted. A summary of the recommendation, based on this analysis, are as follows:

- At the intersection of Route 460 and Rob's Drive, reduce delay on the side streets by increase green time for these approaches.
- At the intersection of Route 460 and Kings Fork Road, the southbound approach lane configuration should be changed to provide an exclusive left turn lane and combined through/right turn lane. This provides a dedicated lane to the movement with heavier volumes and signal phasing optimization. Also suggested are the provision of flashing yellow arrows on the Route 460 approaches to provide a safety benefit and phasing optimization for left turning vehicles.
- At the intersection of Route 460 and Providence Road/Lake Prince Drive, implement flashing yellow arrows on the Route 460 approaches to provide a safety benefit and phasing optimization for left turning vehicles.

8.1.2 Safety Recommendations

The safety portion of this study incorporated systemic template application, intersection evaluation, and site specific assessment toward the development of the recommendations. The safety improvements are comprised of a set of tiered recommendations of signs, pavement markings, geometric changes, traffic ontrol techniques and other improvements to enhance safety and operations of the Route 460 corridor. The recommendations were determined through an evaluation of crash history and proactively applying templates of proven safety echniques in combination with site specific modifications with proven safety results.
During the five-year period of 2012-2016, there were 242 crashes. Through the approach presented in this report, the most prevalent and most severe crash types have been comprehensively considered and addressed.

Two of the most common crash types were intersection-type crashes with rear end crashes accounting for 33 percent or 79 reported crashes and angle crashes accounting for 16 percent of all crashes or 39 reported crashes. Improved intersection signage, enhanced roadway delineation, and along with improvements in select locations, such as lighting and dynamic intersection warning improve intersection visibility and expectancy. Signal timing improvements would provide improved vehicular flow and turn lanes would remove slower moving vehicles from the flow of traffic.

Roadway departure crashes were the second most prevalent crash type within the study area representing 26 percent or 63 of the total crashes. Countermeasures such as improved pavement markings, and rumble strips, along with site specific measures, such as lighting and shoulder widening, provide enhanced roadway delineation and warning for drivers.
8.1.3 Arterial Preservation and Evacuation Recommendations

For the purposes of this report, the existing conditions and potential considerations for arterial preservation and evacuation were reviewed at a high level. These findings have been summarized but no direct recommendations are included in this report. However, VDOT should consider these elements when planning for proposed changes to the corridor.

A high level summary of recommendations costs are presented in Table 8.1. See Appendix H and Appendix J for additional details.

Table 8.1.
Recommended Improvements.

Treatmemt	Cost
Systemic Treatments	
Tier 1	\$1,293,492
Tier 2	\$518,817
Tier 3	\$608,284
Total	\$2,420,593
Site Specific Treatments	
Tier 1	\$73,056
Tier 2	\$23,246
Tier 3	\$5,983,620
Total	\$6,079,922

8.2 Conclusion

Safety and operations play an important role in improving mobility along Route 460. This study has identified varying tiers of low-cost improvements that can be implemented along the corridor to provide a safer travel experience to road users.
The City of Suffolk is applying for funding for the implementation of Alternative 2 for the longer term improvements. The implementation of this alternative would further address the safety and operational challenges along the Route 460 corridor.

56 | RoUte 460 SAFETY AND operations study

Appendix A

$\begin{aligned} & \text { Pave } \\ & \text { Went } \\ & \text { Wident } \end{aligned}$	Traffic Volume	Roadway Type					
		$\begin{gathered} \text { Undii } \\ \text { Unided } \\ \text { Linited } \\ \text { Ancess } \end{gathered}$			$\begin{aligned} & \text { Other Rural } \\ & \text { Arterials and } \\ & \text { Collectors } \end{aligned}$	Resident	$\begin{gathered} \text { Allother } \\ \text { Repled } \\ \text { Seagmayy } \\ \text { Segments } \end{gathered}$
220 feet	23,000 pd	Required	Required	Required	Recommented		$\begin{array}{\|c} \text { Maybe } \\ \text { considered } \\ \text { Conlywere } \\ \text { Engineering } \\ \text { intidides } \\ \text { neded } \\ \text { ned } \end{array}$
	<3,000	Required	Required	Reque			
<20feet	23,000 pd	Required	Required				
	<3,000 pod	Required	Required				

Template 1 - Unsignalized Intersection - 4-leg (2-way stop controlled), Undivided (3 Tiers)

M1-4

Template 3 - Unsignalized Intersection - 3-leg (1-way stop controlled) Undivided (3 Tiers)

$\begin{aligned} & \text { Pave } \\ & \text { Werent } \\ & \text { Widt } \end{aligned}$	Vofficic	Roadway Type					
		$\begin{gathered} \text { Undi- } \\ \substack{\text { uidided } \\ \text { Lintited } \\ \text { Ancess }} \end{gathered}$	$\begin{gathered} \text { diresionalion } \\ \text { mutitlane } \end{gathered}$			Reideal	$\begin{aligned} & \text { Allother } \\ & \text { Spery } \\ & \text { Reajedy } \\ & \text { Segment } \end{aligned}$
20 feet	23,000 pod	Required	Required	Required	Reommented	Not	Maybe
	$<3,000$ vod	Reuired	Requir	Requir	Maybe	,	cone
<20 feet	23,000 pod	Required	Required	ecom			
	$<3,000$ pd	Requied	Required	$\begin{aligned} & \text { ered only where } \\ & \text { Engineering } \\ & \text { Study indicates } \end{aligned}$	$\begin{aligned} & \text { Engineering } \\ & \text { Study } \\ & \text { indicates a } \end{aligned}$		indined

Coles

VDOT whb

oss Route Segment

NOTES:
(1) Upgraded signs with current MUTCD standards (font, size Upgraded signs with current MUTCD stand
retroreflectivity, placement, message, etc.)
(1) Fruorescentetivy yell plaw shemeting on changeses of Direction Warning signs
(1) Control sign (R1 Series)

Second Control sign (R1 Series) on left, if median is present and is greater
than 6 'in widtht, with a "Keep Right' sign (R4-7) and Object Marker (OM3-L) Lacing opposite direction
3 Larger Control sign (R1 Series)
Street Name sign (D3-1a or D3-1 for local roads) (County 3 Larger 12" Street Name sign (D3-1, 1a) (County responsibility) Mountable curb, lane narrowing island with second control
sign (see detai)

M3-L Object Marker and R4-7 "Keep Right" sign at end of
mountable curb island
Include signs fout through movectional sign (M1, M3, \& M6 Series) through movement is a different route number.
(1) Advance Intersecting Route and Directional sign on primary routes Advance Intersecting
(M1, M3, \& M5 Series)
Confirmation Route signs (M1 and M3 Series) on primary routes
Destination/guide sign (D1 Series) on Coss
"Begin Right Turn Lane" sign (R3-20R)
Intersection Warring sign (W2 series)
Street Name (W16-8)) signs on CosS approaches
(2) Stop Ahead $\operatorname{sign}(W 3-1)$ on stop controlled approach
$(1$ Two-Direction Large Arrow sign at T-intersection (W1-7)
Add two OM4-3 Object Markers below the Two Direction Large
Arrow (W1-7) sign
Arow
(1) Stop bar/yield line (MUTCD Section 3B. 16
(1) $6^{\prime \prime}$ grooved/in-laid edge line on primary routes
$4^{\prime \prime}$ edge line on secondary routes (see table for application guidance) $4^{\prime \prime}$ center line pavement markings on secondary routes (see table for application guidance)
Solid lane and center line approaching intersection
Mini-skip marks delineating turn lanes through the intersection
Mini-skip , marks at turn lane taper when taper length is greater
(2) Lane use pavement markings (MUTCD Section 3B.20)
(3 "Stop Ahead" or "Yield Ahead" pavement markings (MUTCD Section
(3) Use rumble stripe for $6^{\prime \prime}$ markings
(1) If pedestrian accommodations are present, ensure minimum requirements for crossing ($6{ }^{6}$ solid lines linest ofset minimum minum 6^{\prime} and placed 4 (3) Reflectorized sign posts (MUTCD Section 2A.15)
(1) Reflectorized sign posts (MUTCD Section 2A.15)
(2) Mark obstructions within clear zone (OM1, 2 , or 3 series)
(3) Remove or provide a barrier for obstructions within clear zone
(3) Add transverse rumble strips on stop controlled approach to coss NOTE: Signage and pavement marking placement is not to scale.
Depending upon site conditions, signs should share the same post Depending upon site conditions, , igns should share the same post to
the extent possible in order to reduce sign clutter. Actual placement
will the extent possible in order to reduce sign clutter. Actual placemen
will be determined on a sitity by ite basis based on MTCD and VA
Supplement design standards and guidance. Signs should not be placed in the med
median.

Template 7 - Signalized Intersection - 3-leg (3 Tiers)

Signage
(1) Upgraded signs with current MUTCD standards (font, size, retroreflectivity, (1) Fluaremesce

Post-Mounted
(1) Street Name sign (D3-1a or D3-1 for local roads) (County responsibility) Two-Direction Large Arrow Warning sign at T-intersection (W1-7) Intersecting Route and Directional sign (M1, M3, \& M6 Series). Include signs for through movements on primary routes only where through
Advance Intersecting Route and Directional sign ($\mathrm{M} 1, \mathrm{M} 3, \& \mathrm{M} 5$ Series) on primary routes
Confirmation Route signs (M1\& M3 Series) on primary routes
(2) Advance Intersection Lane Control of signs (R3-8 Series) on approaches with (urn lanes, or "Begin Right Turn Lane" sign
Advances where on Name signs $(\mathbf{D}-2$ ane in present
Add two OM4-3 Object Markers below the Two Direction Large Add two OM4-3 Ob
Arrow (W1-7) sign
Signal Ahead warning sign (W3-3) on Coss
Signal Ahead warning sign (W3-3) on non-CoSS road
Street Name (W16-8) signs on CosS approaches
Intersection Warning sign (W2-4) on approach that does not
3 Overhead Lane Use signs and Left Turn Regulatory signs Mast arm mounted $12^{\prime \prime}$ Street Name sign (D3-1a or D3-V1 for local roads) Pavement Markings

Stop baryield line (MUTCD Section 3B.16)
$5^{\prime \prime}$ grooved/in-laid edge line on primary routes
4^{4} edge line on secondary routes (see table for application guidance) 4^{4} center line pavement markings on secondary routes (see table for application guidance)
Mini-skip marks delineating turn lanes through the intersection when dua
Mini-skip marks at turn lane taper when taper length is greater than 100 Lane use pavement markings (MUTCD Section 3B.20)
se rumble stripe for 6 " markings
heck signal sight distan
$12{ }^{1}$ LED signal lenses
Red and yellow arrow lenses for protected movements Signal backplates with retroreflective border
Oneck for proper red clearance and yellow change intervals (VDO)
Provide near side signal heads if minimum signal sight distance is not provided rovide actuated signals
Other
If pedestrian accommodations are present, ensure minimum requirements for crossing (6" solid lines offset minimum 6^{\prime} and
placed 4 ' in advance of the stop bar), Pedestrian Warning sign, and Right Turn Yield to Pedestrian signs
(1) If pedestrian phase is present, provide pedestrian countdown signals with pushbutton activation and appropriate pedestrian crossing clearanc
interval.
$\begin{array}{cll}\text { (1) } & \text { Restrict parking near intersection } \\ \text { 3 } & \text { Reflectorized sign posts (MUTCD Section 2A.15) } \\ \text { 3 } & \text { Transverse rumble strips on approach to CoSs }\end{array}$
$\begin{array}{ll}\text { 3 } & \text { Transverse rumble strips on approach to coss } \\ \text { (1) } & \text { Trim vegetation to provide adequate sight distance }\end{array}$
2 Mark obstructions within clear zone (OMI, 2, or 3 Series) 3 Remove or provide a barrier for obstructions.
Nore: Signage and pavement marking placement is not to scale. Depending upon
site conditions, signs should share the same post to the extent posible in order to reduce sign clutter. Actual placement will be determined on a a site by bite obasis based
on MUTCD and/or VA Supolement design tandards and on MUTCD and/or VA Supplement design standards and guidance. Signs should not
be placed in the median unless the median is ≥ 4 wide and the sign is maller than the

				Roadway Type		
$\begin{aligned} & \text { Pave- } \\ & \text { widt } \\ & \text { Width } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Traffic } \\ \text { Volume } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Undivided } \\ \text { Limited } \\ \text { Access } \end{array}$	$\begin{gathered} \text { diresional } \\ \text { mutitlane } \end{gathered}$	$\begin{gathered} \text { Other } \\ \text { Non-Local } \\ \text { Residential } \end{gathered}$	Other lecal Residential	Residentitial
218 feet	250 vpd	Required	Required	Required	Recommended	Recommended
	<500 pd	Required	Required	Optional (if warranted)	Optional	Recoommended
<18feet	2500 vd	Required	Reque	$\begin{aligned} & \text { May be considered only where } \\ & \text { Engineering } \\ & \text { Study indicates a need } \end{aligned}$		Recommended
	500	Requir	Requir			Recomme

NOTES:

Signage
(1) Upgraded signs with current MUTCD standards (font, size, retroreflectivity,
(1) Flucementestent yestllow sheeting on change of Direction- Warning signs (1) Street Name sign (D3-1a or D3-1 for local roads) - County responsibility Intersecting Route and Directional sign (M1, M3, \& M6 Series) on primary
 medians where iti is not teadily apparent that
to keep to the right (MUUTCD Figute 28 10)
3 Add Object Marker on same post as $R 47$ or on separate post
(1) Advance Intersecting Route and Directional sign ($\mathrm{M} 1, \mathrm{M} 3, \& \mathrm{M} 5$ Series) on (1) Advance intersecting Route and Directionat sign M M1, M3, α Confirmation Route signs (M1-M3 Series) on primary routes Destination/guide sign (D1-1) on primary routes
Avance Intersection Lane control signs (R3-8 Series) on approaches with
turn lanes or "Begin Right Turn lane" sign (R3-20) where only a Aurn lanes ors "eegin Right Turn Lane" sign (R3-20R) where only a right-turn
lane is resent
3. Advance Street Name signs on coss (D3-2 \& D3-V2)

 "One Way" and "Do Not Enter" signs per VA Su
2. Overhead Lane Use signs and Left Turn Regulatory signs
(1) Mast arm mounted 12^{2} Street Name sign (13 -1a Savement Markings Stop baryield line (MUTCD Section 38.16)
$6^{\prime \prime}$ grooved/in-laid edge line on primary routes
年" edge line on seconendry routes (see table for application guidance)

$$
\begin{aligned}
& \text { guidance) } \\
& \text { Solid lane and center line approaching intersection }
\end{aligned}
$$

$$
\begin{aligned}
& \text { D Solid lane and center line approaching intersection } \\
& \text { Mini-Skip marks delineating turn lanes through the intersection } \\
& \text { when dual turn lanes are present }
\end{aligned}
$$

$$
\begin{aligned}
& \text { when dual turn lanes are present } \\
& \text { Mini-Skip marks at turn lane taper when taper length is greater than } 100^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Mini-Skip marks at turr lane taper when taper length } \\
& \text { Lane use pevent making (UTCD Section 3B.20) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Lane use paveement markings } \\
& \text { Use rumble stripe for } 6 \text { " markings }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ignal } \\
& 19
\end{aligned}
$$

$$
\begin{aligned}
& \text { Check signal sight distance } \\
& 12^{\prime \prime} \text { LED signal lenses }
\end{aligned}
$$

$$
\begin{array}{l|l|}
\hline 1 & 12^{\prime \prime} \text { LED signal lenses } \\
1 & \text { Red and yellow arrow lenses for protected movements }
\end{array}
$$

D

Signal backplates with retroreflective border
Check for proper red clearance and yellow change intervals (VDOT TE 306.1 .1 One signal head per approach (where structural loading permits) Provide near side signal heads if minimum signal sight distance is not provided Provide actuated signals

If pedestrian accommodations are present, ensure minimum requirements for crossing (6" solid lines offset minimum 6^{\prime} and placed 4 ' in advance of the stop bar),
Pedestrian Warning sign, and Right Turn Yield to Pedestrian signs.
If pedestrian phase is present provide pedest to pedestrian signs.

Reffectorized sign posts
Transverse rumble strips on approach to Coss
Trim vegetation to provide adequate sight distance within clear zon
Mark obstructions within clear zone (OM1, 1 , or 3 Series) Mark obstructions within clear zone (OM1, 2 , or 3 Series)

NOTE: Signage and pavement marking placement is not to scale. Depending upo site conditions, signs should share the same post to the extent possible in order to
reduce sign clutter. Actual placement will be determined on a site by site basis based
on MUTCD and or MA Supplement desigig standards and guidance. Signs should not be placed in the median unless the median is $\geq 4^{\prime}$ wide and the sign is smaller than the

$\begin{aligned} & \text { Pave- } \\ & \text { Went } \\ & \text { Width } \end{aligned}$	Traffic Volume	Roadway Type					
		$\begin{gathered} \text { Undi- } \\ \substack{\text { Uided } \\ \text { Linited } \\ \text { Access }} \end{gathered}$	$\begin{gathered} \text { dirificional } \\ \text { mitultiline } \end{gathered}$		$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|r\|r\|rrl} \text { Arterials and } \\ \text { collectors } \end{array}$	Residential	
220 feet	$23,000 \mathrm{vpd}$	Required	Required	Required	Recom		
	<3,000 pd	Required	Required	Required			
<20feet	23,000 vpd	Required	Requie				
	$<3,000$ vpd	Required	Required				

Criteria for Placement of Center Line Markings (Source: Virginia Supplement Chapter

$\begin{aligned} & \text { Pave } \\ & \text { Went } \\ & \text { Widath } \end{aligned}$	Trffic Volume	Roadway Type				
		$\begin{array}{\|l\|l} \text { Undividided } \\ \text { Limited } \\ \text { Access } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { direvitional } \\ \text { mititi-ine } \end{array}$	$\begin{gathered} \text { Other } \\ \text { Non-local } \\ \text { Residential } \end{gathered}$	Other Local Residential	Local Residential
≥ 18 feet	250 vod	Required	Required	Required	Recommended	Recomme
	<500 pd	Required	Required	$\begin{aligned} & \text { (Optional } \\ & \text { (if waranted) } \end{aligned}$	Optional	Recommende
<18feet	2500 vd	Required	Required	$\begin{aligned} & \text { May be considered only where } \\ & \text { Engineering } \\ & \text { Study indicates a need } \end{aligned}$		Recommended
	<500 pod	Required	Required			Recommended

Raised Pavement Marker Application (Source: MUTCD VA Supplement Section 3B.11)

Tier	CosS Facility Type	AADT	Posted Speed Limit	Lighting	Application
1	All Roadway facilities	-	$\geq 60 \mathrm{MPH}$		SRPMS shall be installed continuously.
1	Two-Lane, Two-Way Roadways	215,00		$\begin{aligned} & \text { Nor roadway y } \\ & \text { lighting } \end{aligned}$	SRPM s shall be installed continuously.
1	Mutiliane Roadways	$\geq 25,00$	$\geq 45 \mathrm{MPH}$	No roadway lighting	SRPMs shall be installed continuously.
2	Mutiliane Roadways	$\begin{gathered} 15,000 \leq \text { AADT } \\ <25,000 \end{gathered}$	$45-55 \mathrm{mph}$		SRPMS shall be installed continuously.
3	Two-Lane, Two-Way Roadways (Only if the sections DO NOT Thave multiple horizontal curves with Posted Speed Limit $<55 \mathrm{MPH}$)	$\begin{gathered} 5,000 \leq \text { AADT }< \\ 15,000 \end{gathered}$			SRPMs shall be installed continuously.
3	Two-Lane, Two-Way Roadways	$\geq 15,00$		Roadway lighting present	SRPM s shall be installed continuously.
3	Mutiliane Roadways	$\geq 25,00$	$45-55 \mathrm{mph}$	Roadway lighting present	SRPM s shall be installed continuously.

Delineator Placement and Spacing (Source Section 3F.04 MUTCD VA Supplement)		
Type	Placement	Spazing
D-1	On the right of through roadways	300 feet*
D-1	Interchange ramps	100 feet exxept on horizontal curve sections
D-2	On acceleration and deceleation lanes	100 feet
	ators on bariere or guardrail	80 feet (may vary on interchange ramp horizontal curve sections although maximum spacing $=80$ feet)

*pacing may take
mutco guidance)

Raised Pavement Markers: Pace pavement $t=1$
center of roadway

Template 9-Corridor - Undivided Roadway (3 Tiers)

2 Center Line Rumble Center Line R
Strips/Stripes

6" Gre
(3)

Post-mounted
$\stackrel{\text { Post-mounted }}{\sim}$
(1) Tier 1 Recommendations (2) Tier 2 Recommendations
(3) Tier 3 Recommendations

notes

U) Upgraded signs with current MUTCD standards (font, size, etroreflectivity, placement, message, etc.)

(1) Flu

 Fluorescent yellow sheeting on change of Direction Warning signs\qquad
(2) $6^{\prime \prime}$ grooved-in center line markings on primary route
$6^{\prime \prime}$ grooved/in-laid edge line (MUTCD Section $3 B .01$ and $3 B .06$) on Col$^{\prime \prime}$ groooved/in-la
primary routes
(1) Reflective, snowplowable, raised pavement markers (Section 3B.11 MUTCD VA Supplement)(see table for application guidance and template tier)
other
Trim vegetation provide adequate sight distance within clear zone 2 Mark obstructions within clear zone (OM1, 2 , or 3 Series)
(3) Remove or provide a barrier for obstructions within clear zone

3 Post-mounted reflective delineators (Chapter 3F MUTCD VA Supplement)(see table for application quidance)
(1) Reflective delineation of barriers (Chapter 3F MUTCD VA Supplement
If bike route is present install signs and pavement markings (shared Shoulder rumble strises/stipes (MUTCD Chapter 33.01) on corridors with a high number of roadway departure crashes per IIM \#212.5. (see notes for application details)
(2)

Center line rumble strips/stripes (Section 31.01 MUTCD) on corridors with a high number of head-on crashes or crashes involving vehicles
crossing the centerline (see notes for application details) (3) Reflectorized sign posts (MUTCD Section 2A.15)

NOTE: Signage and pavement marking placement is not to scale. Actual placement will be determined on a site by site basis based on MUCCD
nd/or VA Supplement design standards and guidance. Signs should ot be placed in the median unless the median is $\geq 4^{\prime}$ wide and the sign is smaller than the median.

umble Strips and Stripes:

If it is determined that rumble strips/stripes should be applied to a
corridor, utilize the following application guidance
paved shoulders of Coss where the shoulder has a moutside of four (4) feet where bicycles are prohibited and eight (8) feet where bicycles are permitted. Rumble strips shall not be placed within
limits of bridge drainage aprons or special design shoulder slot limits
inlets.
inlets.
Shoulder rumble stripes shall be placed with an intermittent patte Shoulder
on outside paved shoulders of Coss where shoulders are at least two (2) feet wide. Rumble stripes shall not be placed in the following ocations: within 50^{\prime} of any intersection, turn lane, acceleration/ deceleration lane, or gore area; bridge drainage aprons; or, special
design shoulder slot inlets. enter line rumble strips sh
locations: within limits of bridges; on narrow, unmarked road sections without pavement markings; within the limits of center two
way turn lanes; or in passing zones. way turn lanes; or, in passing zones.
Additional rumble strip/stripe application guidance can be found in the accordance with current MUTCD and/or VA Supplement standards.

No Passing Zones
Source: MUTCD Section 3B.02)
On two-way, two- or three-lane roadways at vertical and horizontal passing must be prohibited because of inadequate sight distances or other special conditions.
At horizontal or vertical curves where:
A. The passing sight distance is less than the minimum shown in the following table for the 85th-percentile speed or the posted or
statutory speed limit. statutory speed limit.
B. The passing sight distance on a vertical curve is the distance at which an object 3.5 feet above the pavement surface can be seen a point 3.5 feet above the pavement.
C. the passing sight distance on a horizontal curve is the distance measured along the center line (or right-hand lane line of a
three-lane roadway) between two points 3.5 feet above the three-lane roadway) between two points 3.5 feet above the pavement on a line tangent to the embankment or other
obstruction that cuts off the view on the inside of the curve A short stretch of depressed alignment that might momentarily hide a vehicle should be treated as a no-passing zone when center line striping is provided on a two-lane or three-lane road

85th Percentile or Posted or Statutory Speed Limit	Minimum Passing Sight Distance
25 mph	450 feet
30 mph	500 feet
35 mph	550 feet
40 mph	600 feet
45 mph	700 feet
50 mph	800 feet
55 mph	900 feet
60 mph	1,000 feet
65 mph	1,100 feet
70 mph	1,200 feet

Approximate Spacing for Delineators on
Horizontal Curves (Induding Interchange Ramps)
(Source Section 3 F.04 MUTCD VA Supplement)

Placement	Spacing
Radius of curve $=50$ feet	20 feet
Radius of curve $=115$ feet	25 feet
Radiu of curve $=180$ feet	35 feet
Radius of curve $=250$ feet	40 feet
Radius of curve $=300$ feet	50 feet
Radiu of curve $=400$ feet	55 feet
Radius of curve $=500$ feet	65 feet
Radius of curve $=600$ feet	70 feet
Radius of curve $=700$ feet	75 feet
Radiu of curve $=800$ feet	80 feet
Radius of curve $=900$ feet	85 feet
Radius of curve $=1,000$ feet	90 feet

Template 11 - Curve - Undivided Roadway (3 Tiers)

The following templates should only be applied at curves based on differentia of speed limit and advisory speed and ball-bank testing as specified by MUTC equirements. See MUTCD Tables $2 \mathrm{C}-5$ and $2 \mathrm{C}-6$ along with Section 2 C .08 . Other measures identified in coridor rse 2 . 6 ter may Signage
(1) Upgraded signs with current MUTCD standards (font, size, retroreflectivity placement, message, etc.)
(1) Minimize driver distraction in curve by relocating wayfinding/informational signs so they are not placed on the curve.
(1) Horizontal alignment signs (W1 Series)

3 Larger sized /double Curve Warning signs (arrow or chevrons - W1-8 $1-6)$ with reflectorized (painted or with panel sign posts (MUTCD Section 2A.15) (W1 Series with W13-1 Oversized Left and Right Adv
. Pavement Markings
.
Other

1) Post-mounted delineator exept in locations with cherron (egif Post-mounted delineators except in locations with chevrons (e.g. if
chevrons are present on outside of curve, place delineators on inside of curve only) (MUTCD Section 3B.20)
3 Shoulder widening (engineering study required to determine exact widths) 3 Reflectorized sign posts (MUTCD Section 2A.15)
3 Flashing beacons on top of curve warning signs
NOTE: Signage and pavement marking place ment is not to scale. Depending upon site conditions, signs should share the same post to the extent possible in order to reduce sign clutter. Actual placement will be determined on a site guidance. Signs should not be placed in the median unless the median is $\geqslant 4^{\prime}$ wide and the sign is smaller than the median.

Type of Horizontal Alignment Sign	Difference Between Speed Limit and Advisory Speed				
	5 mph	10 mph	15 mph	20 mph	25 mph or more
Turn (W1-1), Curve (W1-2), Reverse Turn (W1-3), Reverse Curve (W1-4), Winding Road (W1-5), and Combination Horizontal Alignment/Intersection (W10-1) see Section 2 C. 07 to determine which sign to use)	Recommended	Required	Required	Required	Required
Advisory Speed Plaque (W13-P)	Recommended	Required	Required	Required	Required
Chevrons (W1-8) and/or One Direction Large Arrow (W1-6)	Optional	Recommended	Required	Required	Required
Exit Speed ($\mathrm{W} 13-2$) and Ramp Speed ($\mathrm{W} 13-3$) on exit ramp	Optiona	Optional	Recommended	Required	Required

eft and Right Advance Curve Warning Sign with Advisoly

"Horizontal Alignent Waming signs may aso be e sed on o other roadways or on arte and collecto roadways with hess than 1,000 AAOT besed on engnineering judgment
sce MUTCO
(see MuTco Section 2 C.Of for more information)

Bail-bank indicator criteria for Advisory Speed Plaques

 (Source VA MUTCD Sections $2.06 \&$ \& 2.08)A. 16 degrees of ball-bank for posted speeds of 20 mph or less
B. 14 degrees of ball-bank for posted speeds of 25 or 30 mph
C. 12 degrees of ball-bank for posted speeds of 35 mph to 45 mph
D. 10 degrees of ball-bank for posted 5 speeds of 50 mph or greater

Typical Spacing of Chevron Alignment Signs on Horizontal Curves: (Source: MUTCD Table 2C-6)		
Advisory Speed	Curve Radius	Sign Spacing
15 mph or less	Lesst than 200 feet	40 feet
20 to 30 mph	200 to 400 feet	80 feet
35 to 45 mph	401 to 700 feet	120 feet
50 to 60 mph	701 to 1,250 feet	160 feet
more than 60 mph	More than 1,250 feet	200

Appendix B

VDOT, with support from VHB, hosted two public meetings, welcoming questions, comments and thoughts from residents and businesses regarding the Route 460 Safety and Operations Study. The first public meeting took place on Wednesday, October 18, 2017 at Kings Fork Middle School, and the second took place on Thursday, October 19, 2017 at Windsor High School. Both of the meetings were open houses where locals could walk around, look at poster boards with information on the study, and talk to representative areas of concern.
The first public meeting at Kings Fork Middle School had approximately eleven attendees. These attendees were The first public meeting at Kings Fork Middle School had approximately eleven attendees. These attendees were
mostly from the surrounding areas of Suffolk and Windsor. The second public meeting at Windsor High School had approximately 17 attendees. These attendees were mostly citizens (from Zuni, Suffolk, Windsor, and Ivor), members of local government, and media personnel.

Local Comments

The overarching opinion of the local community is that Route 460 should be widened. This was mentioned a few times in the comments. The specific locations that were mentioned were \#3 (Kings Fork Road), \#5 (Prudence Road) \#8 (Old Myrtle Road), \#11 (1,000' East of Old Suffolk Road), \#12 (Lovers Lane) and \#13 (Bank Street).
\#3 (Kings Fork Road) - Resident mentioned the need for an advance warning sign for Kings Fork Road signal, as there are many vehicles speeding on the approach to the intersection.
\#5 (Prudence Road) - Residents have suggested that this intersection is challenging due to the vehicular traffic from the Pruden Center
\#8 (Old Myrtle Road) - Residents have complained that this intersection has numerous pot holes and that the intersection is dangerous.
\#11 (1,000 East of Old Suffolk Road) - Residents have suggested that there are pot holes, rough road, and a bad shoulder at this location along Route 460
\#12 (Lovers Lane) - This intersection, along with Windsor Boulevard, was the most referenced intersection in the local comments. Residents have cited that turning onto and off Lovers Lane is dangerous around commute time, as oncoming traffic is heavy and numerous vehicles are speeding.
\#13 (Bank Street) - Due to the complex geometry of the intersection, residents have suggested that this intersection have pedestrian signals, for safe crossing of peds and bikes.

Appendix C

VHB
 Two Columbus Center 500 Main Street, Suite 40 Virginia Beach, V A 23346 p: 757.490 .0132

VHB
 Two Columbus Center 4500 Main Street, Suite 400

File Name : US460@Northfield
Site Code e
Start Date
: $5 / 18 / 2017$

Groups Printed- Motorcycles - Cars - Light Goods Vericles - Buses - Unit Trucks - Articulated Trucks - Bicycles on Road - Bicycles on Crosswalk - Pedestrians | $\begin{array}{c}\text { Northfield Drive } \\ \text { Southbound }\end{array}$ | US 460 (Pruden Boulevard) | No Approach | US 460 (Pruden Boulevard) |
| :---: | :---: | :---: | :---: |

"* BREAK "

04:00 PM 04.35 PM 04:45 PM	$\begin{gathered} 35 \\ 16 \\ 11 \\ \hline 8 \\ \hline \end{gathered}$	0	$\begin{array}{r} 15 \\ 6 \\ 9 \\ 9 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 242 \\ & 254 \\ & 249 \\ & 252 \\ & 252 \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 16 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 237 \\ & 272 \\ & 266 \\ & 267 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	0 0 0 0	$\begin{aligned} & 547 \\ & 564 \\ & 564 \\ & 525 \\ & 524 \end{aligned}$	547 564 551 521
Total	70	0	40	0	0	997	57	0	0	0	0	0	7	1012	0	0	0	2183	2183
05:00 PM 05:15 PM 05:30 PM	$\begin{gathered} 25 \\ 15 \\ 9 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 297 \\ & \begin{array}{l} 277 \\ 277 \end{array} \end{aligned}$	$\begin{gathered} 12 \\ 9 \\ 4 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	2 1 1 1	$\begin{aligned} & 262 \\ & \begin{array}{l} 273 \\ 251 \end{array} \\ & \hline 25 \end{aligned}$	0	$\left.\begin{array}{l\|} 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	0 0 0	$\begin{aligned} & 599 \\ & \begin{array}{l} 596 \\ 547 \end{array} \end{aligned}$	599 5976 540
$\frac{05: 45 \mathrm{PM}}{\text { Total }}$	49	0	$\frac{1}{11}$	0	0	${ }_{1}^{260} 110$	${ }_{35}^{10}$	0	0	0	0	0	$\frac{2}{6}$	${ }_{987} 201$	0	0	0	${ }_{274}^{4789}$	474 2189
Grand Tota Apprch \%	$\begin{gathered} 137 \\ 69.2 \\ 6.8 \\ 1.8 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 61 \\ 30.8 \\ 0.8 \end{gathered}$	0	0	$\begin{aligned} & 3429 \\ & \text { 34.8 } \end{aligned}$	$\begin{aligned} & 187 \\ & 5.2 \\ & 5.2 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 31 \\ & 0.8 \\ & 0.4 \end{aligned}$	3763 99.2 49.5	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	0	7608 100	760
Motorcycles	0	0	1		0	18	0		0	0	0		0	24	0		0	0	${ }^{43}$
Motrycles	0	0	1.6	0	0	0.5	0	0	0	0	0	0	0	0.6	0	0	0	0	0.6
\% Cars	77 56.2	0	- 5_{4}^{33}	0	0	${ }_{6}^{2322}$	117 62.6	0	0 0 0	0	0	0	58.1	${ }_{739}^{2781}$	0	0	0	0	${ }_{5}^{5348}$
Soos S Senicics	${ }^{43}$	0	${ }^{23}$		0	${ }^{731}$			0	0	0			621	0		0	0	1484
Buss	31.4	0	37.7	0	0	21.3	29.9	0	0	0	0	0	32.3	16.5	0	0	0	0	19.5
\% Buses	0	0	0	0	0	0.8	0.5	0	0	${ }_{0}$	${ }_{0}$	0	0	0.5	0	0	0	0	${ }_{0}^{46}$
Singe-Unit Tucks	9	0	4			92	8			0	0		2	90	0		0	0	
\% Singelunit Tous	6.6	0	6.6	0	0	${ }^{233}$	4.3	0	0	0	0	0	6.5	2.4	0	0	0	0	${ }_{4}^{2.7}$
\%, Antuluated Tructs	5.8		0	0	0	6.8	2.7	0	0		0	0	3.2	6.1	0	0	0	0	6.3
Sicyles on Road	0	0	${ }_{0}$	0	0	02	0	0	0	0	${ }_{0}$	0	0	0	0	0	0	0	- ${ }_{0}^{6}$
	0	0	0		0		0		0	0	0				0		0		
Pedestrians	0	0	0	0	0	0	0	0	0	0	0	0	0	${ }_{0}^{0}$	0	0	0	0	

VHB Columbus Main Street,																			
																	File Name Site Code Start Dat Page No		
Groups Printed-Motorcycles - Cars - L					Light Goods Vehicles - Buses - U				it Trucks - Articulated Trucks				- Bicycles on Road - Bicycles				one		
	Kings Fork Road Southbound				US $460 \begin{gathered}\text { (Pruden Boulevard) } \\ \text { Westbound }\end{gathered}$				Kings Fork Road Northbound				US 460 (Pruden Boulevard)						
Start Time	Left	Thru\|	Right	Peds	Left	Thrul	Right	Peds	Left				Left		Right		Excu Toal		int. Total
-	11 1	1	${ }^{12}$	0	1	${ }_{101}^{88}$			0	13	${ }^{8}$		18	${ }^{164}$	1	0	0	324 356	324 356
$\frac{\text { 06:45 AM }}{\text { Total }}$	${ }^{15}$	4			$\frac{1}{2}$	189	14 21	0					19 37			0	0		
07:00 AM	21	14	14	0	4	99	9		1	11	19		18	181	0			391	391
07:15 AM	21	10	11		0	117	12						20	188					410
07:30 AM	${ }^{23}$	7	10		0	113	10		1	22	14	0	26	177	0	0	0	403	403
07:45 AM	18	7	13	0	2	97	12		0	25	33	0	31	156	0	0	0	394	394
Total	83	38	48	0	6	426	43	0	2	74	81	0	95	702	0	0	0	1598	1598
	31 20	${ }_{20}^{17}$	23 14	${ }_{0}$	5	$\begin{aligned} & 111 \\ & 129 \end{aligned}$	${ }_{16}^{9}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 38 \\ & 20 \end{aligned}$	$\begin{aligned} & 23 \\ & 16 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 26 \\ & 21 \end{aligned}$	$\begin{aligned} & 156 \\ & 146 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 439 \\ & 419 \end{aligned}$	439 410
08:15 AM $\rightarrow *$ BREAK	20																		
Total	51	37	37	0	10	240	25	0	0	58	39	0	47	304	1	0	0	849	849
*** BREAK ***																			
04:00 PM	20	20	30		23	185	26							176					
04:15 PM	${ }^{11}$	15	${ }^{22}$	0	11	197	22			20	10			${ }^{232}$		0		560	
(eatis $\begin{aligned} & \text { O4: PM } \\ & 0445 \mathrm{PM}\end{aligned}$	${ }^{25}$	22	30	0	19	190	24		1	20	7	0	23 15 15	199	0	0	-	560 543	$\begin{array}{r}560 \\ 543 \\ \hline\end{array}$
04:45 PM ${ }_{\text {Total }}$	$\frac{21}{77}$	15	${ }_{103}$	0	$\stackrel{11}{64}$	1771	- 104		${ }^{3}$	70	4 29	0	73	804	1	0	-	${ }_{243}^{5174}$	${ }_{243} 2174$
05:00 PM	${ }^{23}$	24	33		25	209	36			25	11		22	193					604
	24 16	19 17	24 16	${ }_{0}^{0}$	22 14	${ }_{184}^{200}$	${ }_{36}^{29}$	0 0		40 38	7 6	0	19 24	${ }_{211}^{221}$	${ }_{0}^{3}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{564}^{608}$	608 564
05:45 PM	17	13	19	0	12	178	30		0	36	13	0	20	173	1	0	0	512	512
Total	80	73	92		73	771	131		2	139	37		85	798	7		0	2288	2288
Grand Total	317	225	298	0	155	2397	324	0	10	373	204	0	337	2939	10	0	0	7589	7589
Apprch \% ${ }_{\text {Total }}$	37.7 4.2	${ }^{26.8}$	35.5 3.9		5	俍31.3	11.3 4.3		${ }^{1.7}$	63.5 4.9			10.3 4.4	89.4 38.7	0.3 0.1		0	100	
Motorcycles	2	1	3			18				2	0		4	20	0		0	0	55
\% Motorerycles	${ }^{0.6}$	0.4 164	232	0	2.6	$\stackrel{0.8}{1567}$	0.3 243	0		${ }^{0.5}$	170	0		${ }^{0.7151}$	${ }_{9}$	0	-		
\% Cars	83.6	72.9	77.9	0	69	65.4	75	0	80	72.9	83.3	0	78.6	73.2	90	0	0	0	71.9
Sh Coods venides	44	173	144		-41	${ }_{20,7}^{497}$	22.5	0	$2{ }_{2}^{2}$	74 198	${ }_{15}{ }^{32}$	0	14.8	448 15.2	10	0	-	${ }_{0}$	1344 177
Som Susises	13.9	19								${ }^{2} 2$			12		10	0	0	0	87
\% Buses	0.3	8.4	3.7	0	0.6	0.4 8 8	0.6	0	0	5.9	0.5	0	3.6	0.3	0	0	0	0	
Singe - - Nit Truss		0	${ }^{8}$	0	${ }_{13}^{2}$	${ }_{34}^{82}$	0.9	0	\bigcirc	-3	0.5	0	${ }_{18}^{6}$	${ }^{80}$	${ }_{0}$	0	-	\bigcirc	191
	1.3				1.3	222	2		0	0.	0		.	231	0		0	0	457
\%AAticulaed T Tucs	0.3	0	0.3	0	0	9.3	0.6	0	0	-	0	0	0	7.9	0	0	0	0	$\frac{6}{2}$
	${ }_{0}$	0	0	0	0 0 0	0.1	-	0	0	-	0	0	-	0	${ }_{0}$	0	-	0	${ }_{0}^{2}$
Biocoseso Cosossalk	0	0	0		0	0	0		0	0	0		0	0	0		0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0
(emestrians	0	0	${ }_{0}$	0	-	0	${ }_{0}$	0	-	${ }_{0}^{0}$	0	0	-	${ }_{0}^{0}$	${ }_{0}$	0	- ${ }_{0}^{0}$	0	0 0

VHB Engineering NC, P.C.

Venture I
940 Main Campus Drive, Suite 500 Raleigh, NC 2806
p: $919.829 .3328 f: 919.833 .0034$

File Name : US460@Prince
Site Code Site Code
Start Date e
P/16/2017

	US 258 (Prince Boulevard) Southbound				US 460 (WindsorBuevevard)Westhound				US 258 (Prince Boulevard) Northbound				US 460 (WindsorBoulevard)Eastbound						
Start Time	Left	Thru			Left			Peds	Left										
06:30 AM 06	${ }_{22}^{31}$	${ }_{12}^{9}$	${ }_{3}^{3}$	${ }_{0}^{0}$	${ }_{3}^{5}$	${ }_{68}^{67}$	10	0	${ }_{9}^{9}$	${ }_{31}^{39}$	${ }_{25}^{40}$	0	${ }_{5}^{2}$	${ }_{67}^{63}$	${ }_{1}^{3}$	${ }_{0}^{0}$	0	${ }_{256}^{278}$	278 256
	53				8	135			18	70	65		7	130		0			
07:00 AM	25	19	1	0	7	64	9	0	${ }^{10}$	${ }_{3}^{33}$	${ }^{26}$		10	91	6	0	0	301	301
- 07.15 AM	${ }_{20}^{34}$	29 24	${ }_{4}^{6}$	\%	${ }_{10}^{4}$	62	148	${ }_{0}$	${ }_{12}^{13}$	${ }_{29}^{47}$	${ }_{20}^{20}$	${ }_{0}$	5	${ }_{80}^{72}$	${ }_{2}$	${ }_{0}$		${ }^{287}$	322 287
07:45 AM	23	13	0	0	8	72	26	0	8	16	18	0	0	89	8	0	0	281	${ }_{281}$
Total	102	85	11		29	261	75	0	43	125	84	0	25	332	19	0	0		1191
08:00 AM	17	16	3	0	10	71	${ }^{33}$	0	${ }_{11}$	28	27	0		${ }^{83}$		0	0	294	294
08:19 AM	25	17	3			64	${ }^{23}$			29	18			76	5	0	0		285
Total	42	33	6	0	19	135	56	0	13	57	45	0	5	159	9	0	10	579	579
Break ${ }^{\text {+"* }}$																			
04:00 PM	32	5	4		${ }^{23}$	116	25							73			0	${ }^{356}$	356
	${ }_{19}^{25}$	51 45	${ }_{6}^{3}$	$\stackrel{0}{0}$	- ${ }_{27}^{38}$	${ }_{146}^{110}$	${ }_{34}^{26}$	$\stackrel{0}{0}$	11 6	18	15 15	0 0	${ }_{5}^{6}$	101 99	17	0	${ }_{0}^{0}$	${ }_{437}^{409}$	${ }_{437}^{409}$
04:45 PM	30	38	2	0	31	111	28	0	13	14	16		5	83	7	0	0	378	378
Total	106	169	15	0	119	483	113	0	39	65	60	0	19	356	36	0	0	1580	1580
05:00 PM	34	38			37	121													
05:15 PM	29	${ }^{35}$	4	0	${ }^{26}$	110	39	0	8	${ }^{28}$	10	0		107	5	0	0	407	407
(e5:45 PM	18 30	${ }_{23}^{21}$	${ }_{7}^{6}$	$\stackrel{0}{0}$	33 21 21	116 109	${ }_{36}^{32}$	-	${ }_{6}^{8}$	185	22	0	${ }_{9}$	${ }_{89} 70$	${ }_{5}^{8}$	0	0	$\begin{array}{r}357 \\ 375 \\ \hline\end{array}$	$\begin{array}{r}357 \\ 375 \\ \hline\end{array}$
	111	117	19		117	456	${ }^{133}$		${ }^{27}$				24	349				1544	544
Grand Total				0				0				0				0	0	5428	5428
Approch \%	46.2	47.4	6.4		13.5	68.2	18.3		16	47.7	36.3		5.3	88.2	6.5				
Total \%	7.6	7.8	1.1		5.4	27.1	7.3		2.6	7.7	5.8		1.5	24.4	1.8		0	100	
\% Motorecyles	${ }^{3}$						0		\bigcirc	${ }_{4}^{4}$	${ }^{9}$			9		0	0	0	${ }^{37}$
\% Motoryclies	0.7	${ }^{329}$	${ }^{3.5}$		225		345	0	79		0.9		5				-	0	
\% Cars	82.1	76	75.4	0	77.1	63.6	${ }^{87.6}$	0	56.4	77.4	78.5	0	65	64.9	54.6	0	0	0	70.5
cooss	58	${ }^{65}$	8		52	274	34		37	58	52		17	${ }^{252}$	21		0		928
	14	15.3	14	0	17.8	18.6	8.6	0	26.4	13.9	16.4	0	21.2	19	21.6	0	0	0	17.1
\% Buses	${ }_{1}^{4}$	1.4	3.5	0	0.7	0.3	1.3	0	0	1.7	0.9	0	2.5	0.2	1	0	0	0	0.7
Singe-Unit Tructs		8	1		${ }^{9}$	${ }^{40}$			5	8	${ }^{6}$				${ }_{4}^{4}$		0	0	${ }^{133}$
Sill	1.9	1.9	1.8	0	${ }^{3} 1$	208	1.3	0	${ }^{3.6}$	1.9	1.9	0	${ }^{1} 2$	2.9	4.1				${ }^{2.5}$
\% Anticuateot T Tics	0.2	4.5	1.8	0	1	14.1	1.3	0	13.6	4.1	1.3	0	8.8	12.3	17.5	0	0	0	${ }_{8.5}$
fievcles on Road	0	0	0		0	0	0		0	0					0		0	0	
	0	0	0		0	0	0	0	0	0	0			0	0				0
	0	0			0	0		0	0	0	0	0	0	0	0	0	0_{0}	${ }_{0}$	0
Pedestrins	0	0																	

VHB

TTo Columbus Center
4500 Main street.
Vitite
Vigainia Virginia Beach, , SA 23462
p: 757.490.0132

VHB Engineering NC, P.C.
940 Main Campus Drive, Suite 500
R.919.829.0328: NC:919.833.003

Groups Printed-Motorcycles - Cars - Light Goods Vehicles - Buses - Unit Trucks - Articulated Trucks - Bicycles on Road - Bicycles on

** BREAK

04:00 PM 04:15 PM 04:15 PM $04: 30 \mathrm{PM}$ 04:45 PM	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{l\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 206 \\ & 199 \\ & 290 \\ & 216 \\ & \hline 825 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0 0 0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{l\|} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \\ & 206 \\ & 203 \\ & 845 \end{aligned}$	1 0 0 0 0 1	0 0 0 0	0 0 0 0 0	$\begin{aligned} & 411 \\ & 411 \\ & 412 \\ & 420 \\ & \hline 1674 \end{aligned}$	411 431 412 420 1674
05:00 PM 05:15 PM 05:45 PM	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 248 \\ & 246 \\ & 206 \\ & 178 \\ & \hline 180 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 219 \\ & 235 \\ & 207 \\ & 174 \\ & \hline \end{aligned}$	1 0 1 0 0 0	0 0 0 0	0 0 0 0	$\begin{aligned} & 467 \\ & 463 \\ & 414 \\ & 452 \\ & \hline 550 \end{aligned}$	467 463 414 352
Total	0	0	0	0	1	858	0	0	0	0	1	0	0	835	1	0	0	1696	1696
$\begin{aligned} & \text { Grand Total } \\ & \text { Apporch \% } \\ & \text { Total \% } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{array}{r} 4 \\ 0.2 \\ 0.1 \\ \hline \end{array}$	$\begin{aligned} & 2624 \\ & 99.8 \\ & \hline 95.6 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	0	$\begin{array}{r} 2 \\ 25 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{array}{r} 6 \\ \begin{array}{c} 6 \\ 75 \\ 0.1 \end{array} \\ \hline \end{array}$	0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		3 0.1 0.1	0	0	5750 100	575
\% Motoreccles	0 0	${ }_{0}^{0}$	0 0	0	0	18 0 0	${ }_{0}^{0}$	0	${ }_{0}^{0}$	0	0	0	${ }_{0}^{0}$		0	0	${ }_{0}^{0}$	${ }_{0}^{0}$	44 0.8
\% Motorycles	0	0	0			1810	0		1	0	6		0	2180	2		0	0	4003
\% Cars	0	\bigcirc	0	0	100	${ }^{69}$	0	0	50 1	0	100	0	0	70.1 570	66.7	0	0	0	${ }_{19.6}^{6944}$
Lommen	0	0	0	0	0	18	0	0	50	0	0	0	0	18.3	0	0	0	0	18.2
¢ Buses	0	0	0	0	0	18 0	0	0	0	0	0	0	0	${ }_{06}^{20}$	33	0	0	0	39
Single:Untit Trueks	0	0	0		0	73	0		0	0	0		0	96	0		0	0	169
\% Singe.unt Tuads	0	0	0	0	0	2.8	0	0	0	0	0	0	0	3.1	0	0	0	0	2.9
	0	$\stackrel{0}{0}$	0	0	0	${ }_{8.8}^{232}$	$\stackrel{0}{0}$	0	$\stackrel{0}{0}$	0	$\stackrel{0}{0}$	0	0	219 7	${ }_{0}^{0}$	0	$\stackrel{0}{0}$	$\stackrel{0}{0}$	451 7.8
Bicyces on Road	0	0	0		0	0	0		0	0	0		0	0	0		0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
Bioctesos cosose	0	0	0	0	0	0	0	0	0	${ }_{0}$	${ }_{0}$	0	${ }_{0}$	${ }_{0}$	${ }_{0}$	0	0	0	0
Peedestrins	${ }_{0}^{0}$	${ }_{0}^{0}$	0			${ }_{0}^{0}$	0		${ }_{0}^{0}$	${ }_{0}$		0	${ }_{0}^{0}$		${ }_{0}$		${ }_{0}^{0}$	${ }_{0}^{0}$	

VHB Engineering NC, P.C.

940 Main Campus Drive, Suite 500 Raleigh, NC 28606
p: 919.829 .0328 f:919

Groups Printed- Motorcycles - Cars - Light Goods Vehicles - Buses - Unit Trucks - Articulated Trucks - Bicycles on Road - Bicycles on Crosswalk - Pedestrians

	No Approach Southbound				US 460 (Windsor Boulevard) Westbound				Dominion Way Northbound				US 460 (Windsor Eastbound Eastbound						
Start Time	Left	Thru		Peds	Left			Peds	Left	Thru			eft						
-	0	0 0	${ }_{0}^{1}$	0	${ }_{20}^{23}$	${ }_{86}^{83}$	0	0	0 2	0	${ }_{4}^{2}$	0	0	${ }_{132}^{178}$	${ }_{22}^{22}$	0	0	308	${ }_{206}^{308}$
06.4stal	0	0	0	0	43	${ }_{169}$	0	0	2	0	${ }^{4}$	0	0	${ }_{310}$	${ }_{44}^{22}$	0	0	266 574	$\stackrel{266}{574}$
07:00 AM	0	0	0	0	4	104	0	0	1	0			0	171	2		0	283	283
07:15 AM	0	0	0	0	3	94	0	0	1	0		0	0	${ }^{163}$	${ }_{1}$	0	0	${ }^{263}$	${ }^{263}$
07:30 AM	0	0	0		1	88	0		1	0	0	0	0	169	1	0	0	${ }^{262}$	${ }^{262}$
07:45 AM	0	0	0	0	1	119			0	0	0	0	0	162	2	0	0	284	284
Total	0	0	0	0	11	405	0	0	3	0	1	0	0	665	7	0	0	1092	1092
08:00 Am	0	0		0	1	98	0		1	0	1		0	134	2		0	237	237
	0	0	0	0	1	80	0	0	0	0	0	0	0	129	0	0	0	210	210
Total	0	0	0	0	2	178	0	0	1	0	1	0	0	263	2	01	0	447	447
** break ***																			
04:00 PM						197													
04:15 PM	0	0	0	0	0	194	0	0	2		3	0	0	123	0		0	${ }_{322}$	${ }_{322}$
04:30 PM	0	0	0	0	1	206	0	0	13	0	6	0	0	138	1	0	0	365	365
04:45 PM	0	0	0	0	0	187	0	0	1	0	4	0	0	114	0	0	0	306	306
Total	0	0	0	0	1	784	0	0	23	0	20	0	0	497	2	0	0	1327	1327
05:00 PM	0	0	0	0	0	236	0		0	0			0	122				362	362
	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	${ }_{0}^{0}$	0	${ }_{215}^{216}$	0	0 0	${ }_{1}^{2}$	${ }_{0}^{0}$	1	0	0	142 117	1	0 0	${ }_{0}^{0}$	${ }_{334}^{362}$	362 334
${ }_{\text {05:45 PM }}$	0	0	0	0	0	143	0	0	0	0	3	0	0	135	0	0	0	281	
	0	0			0	810								516	2				339
Grand Total	0	0	0	0	57	2346	0	0	32		36	0	0	2251	57	0	0	4779	4779
Apprch \%	0	0	0		2.4	97.6	0		47.1	0	52.9		0	97.5	2.5				
Total \%	0	0	0		1.2	49.1	0		0.7	0	0.8		0	47.1	1.2		0	100	
(e) Motorycles	0	0	${ }_{0}^{0}$	0	0	12 0.5	0	0	0	0	${ }_{0}$	0	0	21 0.9	${ }_{0}$	0	-	0	33 0.7
Cars	0		0		48	1591			22	0				1511	49		0	0	3254
\% Cars	0	0	0	0	84.2	67.8	0	0	68.8	0	91.7	0	0	67.1	86	0	0	0	68.1
mit Coods velicies	0	0	0		5	470	0		5	0			0	472	${ }^{5}$		0	0	${ }^{958}$
\%iom Coats vinues	0	0	0	0	8.8	20	0	0	15.6	0	2.8	0	0	21	8.8	0	0	0	
\% Buses	0	\bigcirc	0	0	0	12	0	0	0	0	0	0	0	8	0	0	-	0	20
Single-Unit Trucks		0	0			49	0		0	0	2		0	${ }^{63}$	0		0	0	116
\% Singe-V.Vit Tueds	0	0	0	0	3.5	2.1	0	0	0	0	5.6	0	0	2.8	0	0	0	0	2.4
Articulated Trucks	0	0	0		35	212	0		5	0	0		0	${ }^{176}$	${ }_{3}$		0	0	${ }^{398}$
	0	0	0	0	3.5	9	0	0	15.6	0	0	0	0	7.8	5.3	0	0	0	3. ${ }^{8}$
(ityctes on Road	0	0	0	0	0	0	0	0	${ }_{0}$	\bigcirc	0	0	0	0	0	0	-	\bigcirc	${ }^{0}$
Cebierses	0		0		0				0				0		0				
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(edestrians	0	${ }_{0}$	0	0	0	0	0	0	0	0	0	-	0	0	0	-	0	0	0

Appendix D

Table D.1.
Level of Service Results Summary.

(10)	Intersection Name	Control	Existing		2040 No-Build		2040 Build	
			AM	PM	AM	PM	AM	PM
1	U.S. 460/Pruden Boulevard \& Northfield Drive	Signalized	$\begin{gathered} \mathrm{A} \\ \text { (SB-C) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{SB}-\mathrm{D}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (SB-C) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{SB}-\mathrm{D}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{SB}-\mathrm{C}) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (SB-D) } \end{gathered}$
2	U.S. 460/Pruden Boulevard \& Rob's Drive	Signalized	$\begin{gathered} \text { B } \\ (S B-D) \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ (\mathrm{SB}-\mathrm{D}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (S B-D) \end{gathered}$	$\begin{gathered} \hline \mathrm{B} \\ (\mathrm{SB}-\mathrm{D}) \\ \hline \end{gathered}$	$\begin{gathered} c \\ (\mathrm{SB}-\mathrm{D}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (SB-D) } \end{gathered}$
3	U.S. 460/Pruden Boulevard \& Kings Fork Road	Signalized	$\begin{gathered} \text { C } \\ \text { (SB-F) } \\ \hline \end{gathered}$	$\begin{gathered} c \\ \text { (SB-E) } \end{gathered}$	$\underset{(S B-F)}{\mathrm{D}_{1}}$	$\begin{gathered} \mathrm{E} \\ (\mathrm{SB}-\mathrm{F}) \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (NB-F) } \\ \hline \end{gathered}$	$\underset{(N B-F)}{E}$
4	U.S. 4 60/Pruden Boulevard \& Providence Road/Lake Prince Drive	Signalized	$\begin{gathered} \text { B } \\ \text { (SB-C) } \\ \hline \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (NB-C) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \text { (SB-D) } \end{gathered}$	$\begin{gathered} C \\ \text { (NB-E) } \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{SB}-\mathrm{C}) \\ \hline \end{gathered}$	$\begin{gathered} C \\ \text { (NB-D) } \end{gathered}$
5	U.S. 460/Pruden Boulevard/Woodlawn Drive	Unsignalized	(NB-B)	(NB-B)	(NB-B)	(NB-B)	(NB-B)	(NB-B)
6	U.S. $460 /$ Windsor Boulevard \& Old Suffolk Rd	Unsignalized	(SB-C)	(NB-C)	(NB-D)	(NB-F)	(NB-D)	($\mathrm{BB}-\mathrm{F}$)
7	U.S. 460/Windsor Boulevard \& Dominion Way	Signalized	$\begin{gathered} \mathrm{A} \\ \text { (NB-C) } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (NB-C) } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{NB}-\mathrm{C}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{NB}-\mathrm{C}) \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \text { (NB-C) } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ (\mathrm{NB}-\mathrm{C}) \end{gathered}$

Table D. 2
Detailed Level of Service Results Summary

ID	Intersection and Approach	Control	Existing		2040 No-Build		2040 Build	
			AM	PM	AM	PM	AM	PM
1	U.S. 460/Pruden Boulevard \& Northfield Drive	Signalized	$\begin{gathered} \hline \text { A } \\ \text { (2.2 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \hline \text { B } \\ \text { (10.4 } \\ \text { sec/veh } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (3.2 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (15.3 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (3.2 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \hline \text { B } \\ \text { (12.2 } \\ \text { sec/veh) } \end{gathered}$
	Eastbound		A-0.7	A-8.8	A-0.9	B-11.4	A-1.1	A-4.1
	Westbound		A-3	A-8.1	A-4.9	B-16.2	A-4.9	B-16.2
	Southbound		C-33.2	D-40.5	C-33.8	D-40.8	C-33.8	D-40.8
2	U.S. 460/Pruden Boulevard \& Rob's Drive	Signalized	$\begin{gathered} \text { B } \\ \text { (16.9 } \\ \text { sec/veh) } \end{gathered}$	B $(10$ (sec/veh)	$\begin{gathered} \text { C } \\ (22.1 \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (13.4 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { C } \\ \text { (25.2 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { A } \\ \text { (8.9 } \\ \text { sec/veh } \end{gathered}$
	Eastbound		B-13.5	B-13.8	B-18.7	C-20.4	C-26.1	B-12.6
	Westbound		B-16.5	A-4	C-23.3	A-5.8	C-23.4	A-3.4
	Northbound		B-14.4	C-20	B-15.2	C-21.5	B-14.7	C-21.3
	Southbound		D-46.3	D-52.6	D-47.6	D-53.2	D-45.6	D-53.4
3	U.S. 460/Pruden Boulevard \& Kings Fork Road	Signalized	$\begin{gathered} \text { C } \\ (33.8 \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { C } \\ \text { (34.5 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \hline \text { D } \\ \text { (44.5 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \text { (55.6 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (39 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} E \\ \text { (55.6 } \\ \text { sec/veh) } \end{gathered}$
	Eastbound		B-16.7	C-27.3	C-21.9	D-37.6	D-35.2	D-53.6
	Westbound		B-13.7	C-28.9	B-13.2	E-59.8	C-27.9	D-54.3
	Northbound		D-41.9	D-44.5	D-49.5	D-53.9	F-95.7	F-94.2
	Southbound		F-116.1	E-64.1	F-212	F-102.9	C-25.9	D-42.9
4	U.S. 460/Pruden Boulevard\&Providence Road/Lake Prince Drive	Signalized	$\begin{gathered} \text { B } \\ \text { (14.2 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \text { B } \\ (18.6 \\ \text { sec/veh }) \end{gathered}$	$\begin{gathered} \text { B } \\ (18.6 \\ \mathrm{sec} / \mathrm{veh}) \end{gathered}$	$\begin{gathered} \text { C } \\ (24.2 \\ \text { sec/veh } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (17.8 } \\ \text { sec/veh) } \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{C} \\ (22.2 \\ \mathrm{sec} / \mathrm{veh}) \\ \hline \end{array}$
	Eastbound		B-14.1	C-20.1	B-19.4	C-24.3	B-18.5	C-23
	Westbound		B-10.6	B-13.1	B-12.7	B-16.7	B-11.8	B-14.3
	Northbound		B-16.8	C-31.2	C-24.8	E-58.1	C-24.4	D-54.9
	Southbound		C-24.5	C-29.7	D-35.1	D-47.7	C-34.5	D-45.9
5	U.S. 460/Pruden Boulevard/Woodlawn Drive	Unsignalized	-	.	.	-	$\begin{gathered} \mathrm{A} \\ \text { (0.1 } \\ \text { sec/veh) } \end{gathered}$	A 10 (0. $\mathrm{sec} / \mathrm{veh}$
	Northbound		B-11.1	B-11.6	B-13.3	B-14.3	B-13.3	B-14.3
6	U.S. 460/Windsor Boulevard \& Old Suffolk Rd	Unsignalized	-	.	.	.	$\begin{array}{c\|} \hline \text { A } \\ \text { (5.2 } \\ \text { sec/veh) } \end{array}$	A $(5$ ($\mathrm{sec} / \mathrm{veh}$)
	Northbound		C-18.1	C-23.7	D-29.5	F-51.7	D-29.5	F-51.7
	Southbound		C-18.8	B-11.7	D-27.8	B-13	D-27.8	B-13
7	U.S. 460/Windsor Boulevard \& Dominion Way	Signalized	$\begin{gathered} \text { A } \\ (4.4 \\ \text { sec/veh } \end{gathered}$	$\begin{gathered} \hline \text { A } \\ \text { (4.6 } \end{gathered}$ sec/veh)	$\begin{gathered} \text { A } \\ \text { (5.3 } \\ \text { sec/veh) } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { A } \\ \text { (4.9 } \\ \text { sec/veh) } \end{array}$	$\begin{gathered} \text { A } \\ \text { (5.3 } \\ \text { sec/veh) } \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 4.9 \\ \mathrm{sec} / \mathrm{veh} \end{gathered}$ sec/veh)
	Eastbound		A-5.5	A-4.2	A-6.9	A-4.6	A-6.9	A-4.6
	Westbound		A-1.6	A-3	A-1.7	A-3.5	A-1.7	A-3.5
	Northbound		C-28.5	C-30.5	C-27.5	C-30.2	C-27.5	C-30.2

ID	Intersection Name	Control	Existing		2040 No-Build		2040 Build	
			AM	PM	AM	PM	AM	PM
1	U.S. 460/Pruden Boulevard \& Northfield Drive	Signalized	2.2	10.4	3.2	15.3	3.2	12.2
2	U.S. $460 /$ Pruden Boulevard \& Rob's Drive	Signalized	16.9	10	22.1	13.4	25.2	8.9
3	U.S. 460/Pruden Boulevard \& Kings Fork Road	Signalized	33.8	34.5	44.5	55.6	39	55.6
4	U.S. 460/Pruden Boulevard\&Providence Road/Lake Prince Drive	Signalized	14.2	18.6	18.6	24.2	17.8	22.2
5	U.S. 460/Pruden Boulevard/Woodlawn Drive	Unsignalized	0.1	0.1	0.1	0	0.1	0
6	U.S. $460 /$ Windsor Boulevard \& Old Suffolk Rd	Unsignalized	3.6	2.7	5.2	5	5.2	5
7	U.S. $460 /$ Windsor Boulevard \& Dominion Way	Signalized	4.4	4.6	5.3	4.9	5.3	4.9

1: US 460/Pruden Boulevard \& Northfield Drive Baseline

Hereaction Summary Other

Natural Cyle: 65
Control Type: Actuated-Coordinated
Contro ITyp: Actuated-

ntersection Capacity Utilizaion 44.5\% ICU Level of Serice A
Analysis Period (Inin) 15 . Voume ofor sth percentile queve is metered by ustream signal.

2: US460/Pruden Boulevard \& Rob's Drive

2: US460/Pruden Boulevard \& Rob's Drive

Synchro 9 Repoot
Exising AM.syn

$\underset{\substack{\text { Snecho } 9 \text { Repont } \\ \text { Exxing } \\ \text { AMs. }}}{ }$

$\substack{\text { Snunho gepenan } \\ \text { Exising A M sm }}$

3: US460/Pruden Boulevard \& Kings Fork Rd

Synchro 9 Report
Exxsing AM.syn

4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard Baseline

Lane Group	EBL	EBT	EBR WBL	WBT	WBR	NBL NBT	NBR SBL		
Los	c	B	c	B	A	B		c	
Approach Delay		14.1		10.6		16.8		24.5	
Approach Los		в		B		B		c	
Queue Length $50 \mathrm{th}($ (t)	3	75	3	40	0	18		38	
Queue Length 95st (ft)	12	216	8	120	0	57		${ }_{88}$	
Interal Link Dist (tit)		391		2778		851		5 5	
Tum Bay Lenght (ti)	220		200		110				
Base Capapaty (vph)	439	2960	439	2999	1361	34		77	
	0	0	0	0	0	0		0	
Spiliback Cap Reductn	0	0	0	0	0	0		0	
Stiorae Cap Reductn Reduced V C Ratio		0			0	0			
Reduced v C Ratio	0.03	0.28	0.03	0.16	0.06	. 18		0.33	

$$
\begin{aligned}
& \frac{\text { Intirsection Summary }}{\substack{\text { Anera Tpee } \\
\text { Aycte Lengt: } \\
\text { Co }}} \quad \text { Other }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Actuated yyile Lenght: } 48 . \\
& \text { Natural Cyle: } 60
\end{aligned}
$$

$$
\begin{aligned}
& \text { Intersestion capacitit Uilizaz } \\
& \text { Analysis Peirod (min) } 15
\end{aligned}
$$

nchro 9 Report
Exsting AM sym

4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

2 2ndTerm Q (Q2), venlın	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	
${ }^{30}$ 3r-T-Term Q (03), vehlm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of 0 Factor (f.EB\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%oile Back of Q (50\%), vehl/n	0.0	2.3	0.0	0.0	0.0	4.5	0.0	0.0	
\%ilie Storage Ratio (RQ\%)	0.00	0.02	0.00	0.00	0.00	0.30	0.00	0.00	
Initala Q (ab) , veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resisial) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), venh	0	0	-	0	0	0	0	0	
Initial Q Clear Time (t), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Dala									
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assigmment		R				T+R			
Lanes in Grip	0	1	0	0	0	1	0	0	
Gip Vol (v, venh	0	88	0	0	0	419	0	0	
Gip Sat Fow (s), venh/n	0	1583	0	-	0	1805	0	0	
Q Seve Time (g.s.) , s	0.0	1.7	0.0	0.0	0.0	9.0	0.0	0.0	
Cycle Q Cliar Time $(\underline{g}$ (0) s	0.0	1.7	0.0	0.0	0.0	9.0	0.0	0.0	
Prot RT Sat Fow (s. R), venh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (q_R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outiside Lane (P.R. ${ }^{\text {P }}$	0.00	1.00	0.00	0.06	0.00	0.18	0.00	0.25	
Lane Gip Cap (c), vehh	-	${ }^{631}$	0	0	-	${ }^{720}$	0	0	
VIC Ratio (X)	0.00	0.14	0.00	0.00	0.00	0.58	0.00	0.00	
Avail Cap (c.al), venh	0	1259	0	0	0	1435	O	0	
Usitream Filler (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Unifom Delay (d1), sveh	0.0	9.4	0.0	0.0	0.0	11.6	0.0	0.0	
Incr Delay (d2), sven	0.0	0.1	0.0	0.0	0.0	0.8	0.0	0.0	
Initial Q Delay (33), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Deala (d), sveh	0.0	9.5	0.0		0.0	12.4	0.0	0.0	
1 ist-Tem Q (Q1), vehln	0.0	0.8	0.0	0.0	0.0	4.4	0.0	0.0	
2 2n-T-erm Q (Q2), venln	0.0	0.0	0.0	0.0	0.0	0.2	0.0	0.0	
$3 \mathrm{rd-T-memQ} \mathrm{(03)}$,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of 0 Factor (f.EB\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%orie Back of Q (50\%), vehln	0.0	0.8	0.0	0.0	0.0	4.6	0.0	0.0	
\%olie Storage Ratio (RO\%)	0.00	0.18	0.00	0.00	0.00	0.30	0.00	0.00	
Initial $Q(a b)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (ae), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sato (as), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0	0	0	0	0	0	0	0	
Initial Q Clear Time (to, h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summay									
HCM 20010 Los		13.2							
		B							
Notes									

$\stackrel{\text { Notess }}{\text { HCM } 2010 \text { computational engine requires equal clearance times for the phases crossing the barier }}$

5: Woodlawn Dr \& US460/Pruden Boulevard Baseline

6: Old Suffolk Rd \& US 460/Windsor Boulevard

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configuraions		$\uparrow \uparrow$	7	\%	个t			\uparrow	7		4	
Traficic Voume (vph)	3	611	16	19	393	0	${ }^{23}$	3	66	1		
Future Volume (voh)	3	611	16	19	393	0	23	3	66	1	0	
Ideal Fow (vonpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (t)	0		340	400		0	0		300	0		
Storage Lanes	0		1	1		0	0		1	0		
Taper Lenght (t)	25			125			25			25		
Lane Uili. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
			0.850						0.850		0.932	
Flt Protected		0.999		0.950				${ }^{0.960}$			0.976	
Satd. Fow (prot)	0	${ }^{3536}$	1583	1770	3539	0	0	1788	1583	0	1694	
Ftl Permitted		0.999		0.950				0.960			0.976	
Satd. Fiow (perm)	0	3536	1583	1770	3539	0	0	1788	1583	0	1694	
Link Speed (mph)		55			${ }^{55}$			45			45	
Link Distance (ti)		3402			5235			2230			2290	
Travel Time (s)		42.2			64.9			33.8			${ }^{34.7}$	
Peak Hour Factor	0.38	0.89	0.80	${ }^{0.68}$	0.90	0.92	0.41	0.25	0.34	0.25	0.92	0.25
		68			437	0	56	12	194	4	0	
Lane Group Fow (vph)	0	695	20	28	437	0	0	68	194	0		
Sign Control		Free			Free			Stop			Stop	
Area Type: Control Type: Unsignalized												
Inters												

7: Dominion Way \& US 460/Windsor Boulevard

7: Dominion Way \& US 460/Windsor Boulevard

7: Dominion Way \& US 460/Windsor Boulevard

US 460 Corridor Safety Study

Actuated Cyclel Length: 110
Offset: 11 (55% \%), Refierenced to phase 2 :WBTU and $6:$:BTL, Statt of Green
Nataral Crye: 5
Contro Tye: Actual
Control Type: Accuate-Coordinate
Maximum VC Ratio: 0.55

Splisis and Phases: 1: US 460 Pruden Boulevard \& Northield Dive

US 460 Corridor Safety Study
Existing PM $\rightarrow \rightarrow \downarrow \downarrow \leftarrow \downarrow \downarrow$ \& \rightarrow

US 460 Corridor Safety Study
Existing PM

US 460 Corridor Safety Study
US460/Pruden Boulevard \& Rob's Drive

US 460 Corridor Safety Study
3: US460/Pruden Boulevard $\&$ Kings Fork Rd

US 460 Corridor Safety Study

US 460 Corridor Safety Study
US460/Pruden Boulevard \& Kings Fork Rd

Movement	EBL	EBT	EBR	WBL	Wbt	WBR	NBL	NBT	NBR		SBT	
Lane Configuraions	${ }^{1}$	th		\%	14	${ }^{7}$		4			4	
Traficic Volume (venh)						${ }^{133}$						
Future Voume (vehh)	80	822	7	72	792	133	5	127	28	84	75	94
Number	1	${ }^{6}$	16	5	2	12	3	8	18	7	4	
Initial Q, veh		0	0	0	0	0	0	0	0	0	0	
PedB-Bike Aj (A.pot)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Paking Sus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adi Sat Fow, vehhln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1900	1863	
Adj fow Rate, vehh	96	913	8	206	843	148	20	190	43	112	125	152
Adj No. of ilanes	1	2	0	1	2	1	0	1	0	0	1	
Peak Hour Factor	0.83	0.90	0.92	0.35	0.94	0.90	0.25	0.67	0.65	0.75	0.60	0.62
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2		
Opposing Right Tum lifuence	Yes			Yes			Yes			11		
Cap, venh	122	1639	14	235	1855	830	35	156	32	111	87	363
HCM Platoon Raio	1.00	1.00	1.00	1.00	${ }^{1.00}$	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Afrive On Green	0.07	0.46	0.46	0.13	0.52		0.23	0.23	0.23	0.23	0.23	
Ln Gip Delay, Sven	58.1	23.8	${ }^{23.7}$	${ }^{2} 2$.	17.1	14.2	140.0	0.0	0.0	170.6	0.0	36.9
Ln Grip Los	E	c	c	E	B	B	F			F		
Approach Vol, vehh		1017			197			253			389	
Approach Delay, sveh		27.0			26.2			140.0			118.4	
Approach LOS		c			c			F			F	
Timer		1	2	3	4	5	6	7	8			
Assigned Phs			2		4	5	6		8			
Case No		2.0	3.0		7.0	2.0	4.0		8.0			
Phs Duraion ($(+Y+$ Pre), s		13.5	64.5		32.0	21.1	56.9		32.0			
Change Period $(++R \mathrm{c}$) S		6.0	6.8		6.8	6.5	6.8		${ }^{6.8}$			
Max Green (Gmax), s		16.0	49.2		25.2	15.5	49.2		25.2			
Max Alow Headway (MAH), S		3.6	4.8		4.8	3.8	4.8		4.8			
Max Q Clear ($\mathrm{c}_{\text {c }+111), \mathrm{s}}$		7.9	18.4		27.2	14.5	22.4		27.2			
Green Ext Time (gee), s			14.6		0.0	0.1	13.6		0.0			
Prob of Phs Call ($\mathrm{\rho}_{\text {c }}$)		0.95	1.00		1.00		1.00		1.00			
Prob of Max Out (P -)		0.01	0.32		1.00	1.00	0.38		1.00			
Left-Turn Movement Data												
Assigned Mvmt					7	5			3			
Mvut Sat Fow, veehh		1774			276	1774			0			
Through Movement Data												
Assigned Mumt			2		4		6					
Mvit Sat Fow, veehh			3539		381		3595		680			
Right-Tum Movement Data												
Assigned Mvmt			12		14		16		18			
Munt Sat Fow, vehh			1583		1583		32		139			
Left Lane Group Data												
Assigned Mwnt		1	0	0	7	5	0	0				
Lane Assignment		(Prot)			L+T				L+T+R			

S 460 Corridor Safety Study
Existing PM
US460/Pruden Boulevard \& Kings Fork Rd

S 460 Corridor Safety Study

2 2ndTerm Q (Q2), venln	0.0	0.2	0.0	0.0	0.0	0.4	0.0	0.0
3rd-Term Q (Q3), venlin	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%oile Back of F Factor (t.B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%rie Back of ((50\%), venlin	0.0	8.2	0.0	0.0	0.0	10.3	0.0	0.0
\%oile Storage Ratio (RO\%)	0.00	0.09	0.00	0.00	0.00	0.09	0.00	0.00
Initial $Q(a b)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), sweh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat 0 (Sas, ven $^{\text {a }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs, veehh	0	0	0	0	0	0	0	0
Intial Q Clear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Right Lane Group Data								
Assigned Mwnt	0	12	0	14	0	16	0	18
Lane Assigment		R		R		T+R		
Lanes in Gip	0		0	1	0	1	0	0
Gip Vol (v) venh	0	148	0	152	0	472	0	0
G Gp Sat Fiow (s), vehhln	0	1583	0	1583	0	1857	0	0
Q Sene Time (9.5) , s	0.0	5.4	0.0	9.0	0.0	20.4	0.0	0.0
Cycle a Cliar Time (g. C), s	0.0	5.4	0.0	9.0	0.0	20.4	0.0	0.0
Prot RT Sat Fiow (S_R), vehh/lm	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Eff Green (g.R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prop RT Outside Lane (P.)	0.00	1.00	0.00	1.00	0.00	0.02	0.00	0.17
Lane Gip Cap (c), venh	0	830	0	${ }^{363}$	0	${ }^{846}$	0	0
VIC Ratio (x)	0.00	0.18	0.00	0.42	0.00	0.56	0.00	0.00
Avail Cap (c.a) venh		830	0	${ }^{363}$	0	${ }^{846}$		0
Upstream Filer (I)	0.00	0.94	0.00	1.00	0.00	0.69	0.00	0.00
Uniform Deay (di), sveh	0.0	${ }^{13.7}$	0.0	${ }^{36.2}$	0.0	21.8	0.0	0.0
Incr Delay (22), sven	0.0	0.4	0.0	0.8	0.0	1.8	0.0	0.0
Initial Q Delay (3), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Contol Delay (d), sven	0.0	14.2	0.0	36.9	0.0	${ }^{23.7}$	0.0	0.0
1 1st-Term Q (11), vehl/n	0.0	2.3	0.0	3.9	0.0	10.3	0.0	0.0
2 2nd-Tem Q (Q2), vehln	0.0	0.1	0.0	0.1	0.0	0.4	0.0	0.0
$3 \mathrm{rct-T-m} Q$ (03), vehl/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%oile Back of F Factor (t.B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%oil Back of ((50\%), vehln	0.0	2.4	0.0	4.0	0.0	10.8	0.0	0.0
\%oile Storage Ratio (RQ\%)	0.00	0.43	0.00	2.03	0.00	0.10	0.00	0.00
Initial Q (QQ), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Ss), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs) , vehh	0	0	0	0	0	0	0	0
Initial Q Cliar Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Intersection Summay								
HCM 2010 Ctril Delay		49.1						

US 460 Corridor Safety Study
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

S 460 Coridor Safety Study Existing PM
Providence Road/Lake Prince Drive d US400/Puden Boulevard

Lane Group	EBL	Ebt	EBR WBL	wBt	WBR	NBL NBT	NBR SBL	SBT	
Los	D	B	D	B	A	cor		c	
Approach Delay		20.1		13.1		31.2		29.7	
Approach LOS		c		B		c		c	
Queue Lengh 500th(t)	6	190	${ }^{23}$	114	5	${ }^{73}$		73	
Queue Lenght 95sth (ti)	14	${ }^{271}$	22	${ }^{239}$	13	114		95	
Interal Link Dist (ft)		391		277		1851		2257	
Turn Bay Length (tt)	220		200		110				
${ }_{\text {Base Capacity (}}^{\text {(ph) }}$)	269	2987	269	13	1367	5		988	
Staration Cap Reductn	0	0	0	0	0	0		0	
Spiliback Cap Reductn	0	0	0	0	0	0		0	
Stiorae Cap Reduct	0.05	0	0.0	0.30	0.11	0.42		0.38	

Area Type Summay Other

Cyciel Lengnt: 110
Actuated Cyle Length: 66.3
.
Natural Cycle: 60 outa.d.Uncordinated
Contro Type:
Maximum VV. Ratioio. 0.67100
Intersection Signal Defay: 18.6
ntersection Signal Delay: 18.6
Intersection Capacity Utiliz

VHB

US 460 Corridor Safety Study
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

			${ }_{\text {EBR }}$	WBL	\leftarrow				NBR			$\stackrel{ }{\text { S }}$
Movement												
Lane Configuraions	$\stackrel{ }{7}$	${ }_{4}^{4}$		17	$\uparrow{ }^{19}$	7		4			4	
Trafic Volume (vehn)	7	${ }_{820}^{820}$	40		798	92	89		10	${ }_{62}^{62}$	56	
${ }_{\text {Future Voume (vehn) }}$	1	${ }^{820} 8$	40	17	798	92	89	34	18	${ }_{7} 7$	${ }_{4}$	
	0	0	0	0	0	0	0	0	0	0	0	
PedBike Adj (A.pot)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Pakking Sus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Fow, vehh/ln	1863	1863	1900	1863	1863	1863	1900	1863	1900	1900	1883	1900
Adj Fow Rate, vehh	14	891	60	52	897	156	119	49	22	76	${ }^{93}$	
Adj No. of Lanes		2	0		2		0			0	1	
Peak Hour Factor	0.50	0.92	0.67	0.33	0.89	0.59	0.75	0.69	0.46	0.82	0.60	
Percent Heary Ven, \%	2	2	2	2	2		2	2	2	${ }^{2}$	2	
Opposing Right Tum Infuence	Yes			Yes			Yes			Yes		
Cap, venh	30	1591	107	82	1776	795	${ }^{234}$	80	30	170	163	32
HCM Paloon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Prop Arive On Green	0.02	0.47	0.47	0.05	0.50	0.50	0.17	0.17	0.17	0.17	0.17	
Ln G pro Deay, sveh	42.7	13.1	13.1	38.7	11.2	9.2	27.3	0.0	0.0	26.6	0.0	
Ln Gip Los				D		A	c					
Approach Vol, venh		965			1105			190			190	
Approach Delay, sveh		13.5			12.2			27.3			26.6	
Approach LOS								c				
Timer		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6					
		2.0	3.0		8.0	2.0	4.0		8.0			
		7.9	40.1		18.3	9.9	38.1		18.3			
Max Green (Gmax) s		${ }_{9.2}$	60.2		20.2	9.2	60.2		- 21			
Max Alow Headway (MAH), S		3.6	4.7		5.1		4.7		5.1			
Max Q Clear (g_cti), s		2.5	13.2		8.8	3.9	14.6		10.0			
Green Ext Time (0-e), s		0.0	16.9		1.5	0.0	16.7		1.5			
Prob of Phs Call (\sim c.		0.23	1.00		1.00	0.62	1.00		1.00			
Prob of Max Out ($\mathrm{P}^{\text {. }}$)		0.00	0.15		0.11	0.10	0.16		0.14			
Left-Tum Movement Data												
Assigned Mumt		1			7	5			3			
Munt Sat Fow, vehh		1774			542	1774			841			
Through Movement Data												
Assigned Mvmt			${ }^{2}$		4		${ }^{6}$		8			
Munt Sat Flow, venh			3539		942		3366		460			
Right-Turn Movement Data												
Assigned Mvot			12		14		16		18			
Munt Sat Fow, vehh			1583		184		${ }^{227}$		170			
Left Lane Group Data												
${ }_{\text {Assigned MvMt }}$			0			Pet	0	0	$\stackrel{3}{1+T+{ }^{\text {a }} \text { + }}$			
Lane Assignment		(Prot)			LT+R	(Prot)			L+T+R			

vнв

S 460 Corridor Safety Study

Lanes in Grp	1	0	0	1	1	0	0	1	
$G \mathrm{Grpvol}\left(v_{\text {, venh }}\right.$	14	0	0	190	52	0	0	190	
Grp Sat Fiow (s), vehhl/n	1774	0	0	1668	1774	0	0	1472	
Q Seve Time ($(\mathrm{s}$) , s					1.9		0.0	1.2	
	0.5	0.0	0.0	6.8	1.9	0.0	0.0	8.0	
Pemm LT Sat Fow (s-I), vehh/n	0	0	0	1350	O	0	0	1299	
Shared LT Sat Fow (s_sst, vehhl/n	0	0	0	1670	0	0	0	1463	
Pem LTEEff Green (g-p), s	0.0	0.0	0.0	11.5	0.0	0.0	0.0	11.5	
Pem LT Seve Time (g_u), S	0.0	0.0	0.0	3.5	0.0	0.0	0.0	4.6	
Pem LT Q Seve Time (g-ps), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.2	
Timet to First ilk (gT), s	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.8	
	0.0	0.0	0.0	2.0	0.0	0.0	0.0	0.8	
Prop LT liside Lane (P PL)	1.00	0.00	0.00	0.40	1.00	0.00	0.00	0.63	
Lane Grp Cap (c) venh	30	0	0	365	82	0	0	${ }^{343}$	
VIC Ratio () $^{\text {a }}$	0.46	0.00	0.00	0.52	0.63	0.00	0.00	0.55	
Avail Cap (c.a), venh	246	0	0	572	246	0	0	541	
Uspsteam Filter (I)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	
Unifom Delay (di), sven	${ }^{32} 3$	0.0	0.0	25.4	31.0	0.0	0.0	25.9	
Incr Delay (12), sveh	10.5	0.0	0.0	1.2	7.7	0.0	0.0	1.4	
Initial Q Delay (3), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Dealay (d), sveh	42.7	0.0	0.0	26.6	38.7	0.0	0.0	27.3	
1st-T-em Q (a1), vehl/n	0.3	0.0	0.0	3.2	0.9	0.0	0.0	3.3	
2nd-Tem Q (Q2), vehlln	0.1	0.0	0.0	0.1	0.2	0.0	0.0	0.1	
3rd-Term Q (Q3), venl/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%file Back of P Factor ((E.B\%)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	
\%ile Back of ((5\%\%), vehln	0.3	0.0	0.0	3.3	1.1	0.0	0.0	3.4	
\%ilie Storage Ratio (RQ\%)	0.04	0.00	0.00	0.04	0.14	0.00	0.00	0.05	
Initial Q (ab), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual $Q(Q)$), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat eeay (ds), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs) venh	0	0	0	0	0	0	0	0	
Intial Q Clear Time (t), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Midede Lane Group Data									
Assigneed Mumt	0	2	0	4	0	T	0	8	
Lane Assigment		T				T			
Lanes in Grp	0	2	0	0	0		0	0	
Grp Vol (v, venh	0	897	0	0	0	468	0	0	
Grip Sat Fiow (s), vehhln	0	1770	0	0	0	1770	0	0	
	0.0	11.2	0.0	0.0	0.0	12.6	0.0	0.0	
Cycle Q Clear Time (__C), s	0.0	11.2	0.0	0.0	0.0	12.6	0.0	0.0	
Lane Grp Cap (c), vehh		1776	0	0	0	${ }^{836}$	0	0	
VIC Ratio (X)	0.00	0.50	0.00	0.00	0.00	0.56	0.00	0.00	
Avai Cap (c.a), venh	000	${ }_{120}^{3215}$	0.00	0	00	11607	00	0.00	
Uniform Delay (di), sven	0.0	11.0	0.0	0.0	0.00	${ }_{12.0}^{1.00}$	0.0	0.0	
Ince Deay (12), sveh	0.0	0.2	0.0	0.0	0.0	0.6	0.0	0.0	
Initial Q Delay (3), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Dealay (d), sveh	0.0	11.2	0.0	0.0	0.0	13.1	0.0	0.0	
1st-erm Q (a1), veh/ln	0.0	5.4	0.0	0.0	0.0	6.1	0.0	0.0	

S 460 Corridor Safety Study

HCM 2010 computaional enine requies equal dearance imes tor the ohases crossing the barier

Synchro 9 Report
Exising Pusy

US 460 Corridor Safety Study

Intersection Capaciti Utilization
Analysis Period (min)
15

US 460 Corridor Safety Study
5: Woodlawn Dr \& US460/Pruden Boulevard

VHB $\quad \substack{\text { Synctro 9 Report } \\ \text { Exxising PM.syn }}$

US 460 Corridor Safety Study
Existing PM

Lane Group	EBL	EBT	EBR	WBL	wbt	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configuraions		14	7	*	th			4	7		4	
Traficic Voume (vph)	1											
Future Volume (vph)		466	39	55		3	19		38	0	0	
${ }^{\text {Ideal Fow (Fuphol) }}$	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Lengt ((t)	0		340	400		0	0		300	0		
Storage Lanes	0		1	1		0	0		1	0		
Taper Length (ti)	25			125			25			25		
Lane Utili. Factor Fte	0.95	0.95	1.00 0.850	1.00	0.95	0.95	1.00	1.00	${ }^{1.00}$	1.00	1.00	
Fit Protected				0.950					0.850		0.865	
Satd. Fow (prot)	0	3539	1583	1770	3539	0	0	1786	1583	0	1611	
Fit Permited				0.950				0.95				
Satd. Fow ((erm)	0	3539	1583	1770	3539	0	0	1786	1583	0	611	
Link Speed (mph)												
Link Disiance (t)		3402			5235			2230			2290	
Travel ITme (s)		42.2						33.8			34.7	
Peak Hour facior	0.38	0.89	0.80	0.68	0.90	0.92	0.41	0.25	0.34	0.25	92	
${ }_{\text {Adj }}^{\text {Adi. Fow ((pot) }}$ Shared Lane Trafic (\%)	3	524	49	81	912	3	46	8	112	0	0	
	0	527	49	81	915	0	0	54	112	0	12	
Sign Contol		Free			Free			Stop			Stop	

$\frac{\text { Intersecion Summary }}{\text { Area Type: }}$

Area Type:
Contro TYpe: Unsignalized
Intersection Capactity Uiirza
Anayysis Period (min) 15 \qquad ICU Level of Senice A
VHB $\quad \substack{\text { Synchro 9 Report } \\ \text { Exxising Pp.syn }}$

US 460 Corridor Safety Study
\square
Int Delay, sveh

nt Delay, sven	2.7													
Movement	EBL	Ebt	EBR	WBL	WBT	WBR	NBL	NBT	NB		SBL	SBT		
Lane Configurations		$\uparrow \uparrow$	\%	7	th							¢		
Traficic Vo, vehh		466	39	55	821		19				0			
Future Vol, vehh	1	466	39	55	821		19				0	0		3
Conficicing Peds, \#\#hr	0		0	0			0				0	0		
	Free	Free	Free	Free	Free	Free	Stop	Stoo	Stoo		stop.	Stop	Stop	
			None			None							None	
Storage Lengh	-		340	400										
Vehin Meeaian Siorage, $\#$	\#	-			0							-		
Grade, \%		0			0							0		
Peak Hour factor Heary Vehices, \%	${ }^{38}$	89	80	${ }^{68}$	90	9	41			4	25	92		
Heary Venicles, \%	2	2	2	2	2		2			2	2	2		

S 460 Corridor Safety Study

US 460 Corridor Safety Study

Area Type:
Cycd Lengh:
Actuated cacle

Conto ITyp: Actuated-Coordinated
Uaximum VVC Ratio: 0.33
 \qquad Intersection LOS: A
ICU Level of Senice A
.

VHB

US 460 Corridor Safety Study

$\rightarrow \underset{\text { EBT }}{\rightarrow} \underset{\text { EBR }}{ } \quad \downarrow \mathrm{WBL}$ WBT

US 460 Corridor Safety Study
7: Dominion Way \& US 460/Windsor Boulevard

US 460 Corridor Safety Study
Dominion Way \& US 460/Windsor Boulevard
Existing PM

2 nd -Term Q (Q2), vell/n	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	
3 3rd-Tem Q Q (Q3), venh ${ }^{\text {a }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of F Factor (\ddagger B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	
\%oile Back of Q (50\%), , vehln	0.0	2.5	0.0	0.0	0.0	3.1	0.0	0.0	
\%oile Storage Ratio (RQ\%)	0.00	0.10	0.00	0.00	0.00	0.02	0.00	0.00	
Intital Q (ab), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) $Q(Q e)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sata (OSs), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), vehh	0	0	0	0	0	0	0	0	
Intidal Q Cliea Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigne Mvmt	0	12	0	14	0	16	0	0	
Lane Assignment		${ }^{\text {R }}$		${ }^{\text {R }}$					
Lanes in Gip	0	1	0	1	0	0	0	0	
Grp Vol (v, venh	0	4	0	34	0	0	0		
Grp Sat fow (s) vehh/ln	-	1583	0	1583	0	0	0	0	
Q Seve Time (g.s), s	0.0	0.1	0.0	2.0	0.0	0.0	0.0	0.0	
Cycle C Clara Time (g. c), ,	0.0	0.1	0.0	2.0	0.0	0.0	0.0	0.0	
Prot RT Sat Fow (s. R), vehh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RTEff Green (g.R), s		${ }^{0.0}$	0.0	0.0	0.0	0.0	0.0		
Prop RT Outside Lane (P-R)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Lane Gip Cap (c), vehh	0	1146	0	${ }^{69}$	0	0	0	0	
VIC Ratio (X)	0.00	0.00	0.00	0.43	0.00	0.00	0.00	0.00	
Avail Cap (c.al), venh	0	1146	0	337	0	0	0		
Upstream Filler (I)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Unitom Delay (d1), sveh	0.0	3.6	0.0	43.9	0.0	0.0	0.0	0.0	
Incr Delay (d2), slven	0.0	0.0	0.0	5.3	0.0	0.0	0.0	0.0	
Initial 1 Delay (33) sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Dealy (d), sven	0.0	3.6	0.0	49.2	0.0	0.0	0.0	0.0	
${ }^{1 s t-T e r m Q ~ Q(a l), ~ v e l l n ~}$	0.0	0.0	0.0	0.9	0.0	0.0	0.0	0.0	
2 Ld -Term Q (02), vehlin	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
3 3rd-Tem Q (Q3), vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of 0 Factor (ti.3\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	
\%oile Back of Q $50 \% \%$), vell/n	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
\%oile Storage Ratio (RO\%)	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	
Initial $Q(a b)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residua) $Q(Q Q)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), vehh	0	0	0	0	0	0	0		
Intiala Q Cliaa Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summay									
HCM 2010 Crin Deay HCM 2010 Los		5.0							

VHB

US 460 Corridor Safety Study

VHB

US 460 Corridor Safety Study
1: US 460/Pruden Boulevard \& Northfield Drive

	\%	\rightarrow	5	\leftarrow	1	\checkmark	\checkmark		
Movement	EBL	EBT	WBU	WBT	WBR	SBL	SBR		
Lane Configuraions	\%	$\uparrow \uparrow$	Я	$\uparrow \uparrow$	${ }^{7}$	\%	\%		
Traficic Volume (vehh)	11	${ }^{1387}$	0	1154	80		3		
Future Volume (vehh)	11	${ }^{1387}$	0	1154	80	8	3		
Number	1	6		2	12	7	14		
Initial Q , veh	0	0		0		0	0		
Ped-Bike Aj (A pobT)	1.00				1.00	1.00	1.00		
Paking Sus Adj	1.00	1.00		1.00	1.00	1.00	1.00		
Adij Sat Fow, vehhhn	1863	1863		1863	1863	1863	1863		
Adj Fow Rate, vehh	19	1476		1407	127	14	8		
Ad No. of Lanes		2				1			
Peak Hour Factor	0.58	0.94		0.82	0.63	0.58	0.38		
Percent Heary Ven, \%	${ }^{2}$	2		2	2	r	2		
Opposing Right Tum nifuence	Yes					Yes			
Cap, venh	132	2805		2405	1076	58	52		
HCM Palaoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00		
Prop Arive On Green	0.02	0.79		0.68	${ }^{0.68}$	0.03	0.03		
Ln Grp Dealy, sveh	28.9	4.0		8.7	5.3	44.5	43.7		
Ln Griplos	c	A		A	A	D	D		
Approach Vol, vehh		1495		1534		22			
Approach Delay, sveh		4.3		8.4		44.2			
Approach LOS		A		A		D			
Timer:		1	2	3	4	5	6	7	8
Assigned Phs		1	${ }^{2}$		0		6		
Case No		1.1	7.0		9.0		4.0		
Phs Duration ($G+\gamma+\mathrm{RC)}$) s		10.2	69.4		10.4		79.6		
Change Period ($Y+R \mathrm{C}$) S		8.3	* 8.3		7.4		8.3		
Max Green (Gmax), s		11.7	-40		14.6		39.7		
Max Alow Headway (MAH), s		3.6	4.7		3.9		4.7		
		2.2	21.0		${ }^{2.7}$		${ }_{2}^{15.4}$		
		0.38	1.00		0.42		100		
Prob of Max Out $(\underline{-}$ -)		0.00	0.84		0.00		0.79		
Left-Turn Movement Data									
Assigned Mvmt		1	5		7				
Mvmi Sat Fow, velh		1774	0		1774				
Through Movement Data									
Assigned Mvmt			2		4		6		
Mvist Sat Fow, venh					0		632		
Right-Tur M Mvement Data									
Assigned Mvmt			12		14		16		
Mvit Sat Fow, vehh			1583		1583		0		
Left Lane Group Data									
Assigned Mwnt			5	0	7	0	0	0	0
Lane Assignment		PriPm)							

US 460 Corridor Safety Study
1: US $460 /$ Pruden Boulevard \& Northfield Drive

Lanes in Grp	1	0	0	14	0	0	0	0	
Grp Vol (v, venh	19	0	0	14	0	0	0	0	
Gip Sat Fiow (s), vehhl/n	1774	0	0	1774	0	0	0	0	
Q Sere Time (9 S.) , s	0.2	0.0	0.0	0.7	0.0	0.0	0.0	0.0	
Cycle 0 Cliea Time ($(\mathrm{g}$ c), s	0.2	0.0	0.0	0.7	0.0	0.0	0.0	0.0	
Perm LT Sat Fow (s), vehhln	337		0	1774	0	-	0	0	
Shared LT Sat Fow (s.sh), vehhlln	0	0	0	0	0	0	0	0	
Perm LTEEf Green (g.p), s	71.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Perm LT Sene Time (q_u), s	3.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Perm LT Q Seve Time ((q.ps), s	3.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	61.1	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop LT liside Lane (P _L)	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Lane Gip Cap (c), vehh	132	0	0	58	0	0	0	0	
VIC Ratio (${ }^{\text {a }}$	0.14	0.00	0.00	0.24	0.00	0.00	0.00	0.00	
Avail Cap (c.a), venh	325	0	0	288		0		0	
Usptream Filer (I)	1.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	
Unitorm Delay (d1), sven	28.4	0.0	0.0	42.4	0.0	0.0	0.0	0.0	
Incr Delay (12), sweh	0.5	0.0	0.0	2.1	0.0	0.0	0.0	0.0	
Initial Q Delay (33 , , sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (d), sveh	28.9	0.0	0.0	44.5	0.0	0.0	0.0	0.0	
1 1st-Term Q (11), vehln	0.4	0.0	0.0	0.3	0.0	0.0	0.0	0.0	
2 nd -Tem Q (Q2), vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
$3 \mathrm{rc-T-mm} \mathrm{Q}$ (03), vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%\%ile Back of F Factor (t.B\%)	1.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
\%pile Back of (50%), vehln	0.4	0.0	0.0	0.4	0.0	0.0	0.0	0.0	
\%oile Storage Ratio (RO\%)	0.03	0.00	0.00	0.01	0.00	0.00	0.00	0.00	
Initial Q (Qb), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resiual) Q Q(Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Deay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (Qs), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), vehh	0	0	0	0	0	0	0	0	
Initial Q Clear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Midde Lane Group Data									
Assigned Mvmt	0	$\stackrel{2}{2}$	0	4	0	${ }_{6}^{6}$	0	0	
Lane Assignment		T				T			
Lanes in Gip	0	2	0	0	0	2	0	0	
	0	${ }_{1727}^{1470}$	0	0	0	${ }_{1776}^{1476}$	0	0	
$\mathrm{c}_{\text {Grp Sat Fow (s), venhln }}$	0	1770	0	0	0	1770	0	0	
	0.0	19.0	0.0	0.0	0.0	13.4	0.0	0.0	
	0.0	19.0	0.0	0.0	0.0	13.4	0.0	0.0	
Liche Ratio ($($)) (0) venh	0.00	${ }_{0}^{2405}$	0.00	0.00	0.00	${ }_{0}^{2853}$	0.00	0.00	
Avail Cap (c.a), venh	-	2405	0	0	0	2805	0	0	
Upstream Filer (I)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), sven	0.0	7.7	0.0	0.0	0.0	3.3	0.0	0.0	
Ince Delay (d2), sveh	0.0	1.0	0.0	0.0	0.0	0.7	0.0	0.0	
Intital Q Delay (3), Sven	0.0	0.0	0.0	0.0	0.0	0.0		0.0	
Control Delay (d), sveh	0.0	8.7	0.0	0.0	0.0	4.0	0.0	0.0	
1st-Tem Q (11), vehln	0.0	9.2	0.0	0.0	0.0	6.4	0.0	0.0	

US 460 Corridor Safety Study
:US 460/Pruden Boulevard \& Northfield Drive

US 460 Corridor Safety Study
2040 No Build AM
2: US460/Pruden Boulevard \& Rob's Drive
$\downarrow \downarrow$

Lane Group	BL	EBT	EBR	WBL	wBT	BR	NBL	NBT	BR			
Lane Configuraions	\%	¢t		7	$\uparrow \uparrow$	\%		4	${ }^{7}$		${ }_{4}$	
Traffic Volume (vph)	33	1174	26	174	959	80	9			40		
Future Volume (vph)	${ }_{3}$	1174	26	174	959	80	9	10	54	40	${ }^{33}$	
ddeal Fow (pphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	900	
Storae Length (t)	250		0	400		175	0		50	0		
Storage Lanes	1		0	1		1	0		1	0		
Taper Length (tit)	0			0			0			0		
Lane Uiil. Factor	1.00	0.95	0.95	1.00	0.95	1.00	1.00	1.00	1.00	1.0	1.00	
Fit		0.995				0.850			0.850		0.991	
Ftt Protected	0.950			0.950				0.969			0.979	
Satd. Fow (prot)	1770	3522	0	1770	3539	1583	0	1805	1583	0	1807	
Ftil Permitted	0.950			0.950				0.74			0.844	
Satd. Flow (perm)	1770	3522		1770	3539	1583	0	1384	1583		1558	
Right Tum on Red			Yes			Yes			Yes			
Sadd. Flow (RTOR)		5				133			123		4	
Link Speed (mph)		35			35			25			30	
Link Distancee (ti)		2499			463			411			171	
Travel Time (s)		48.7			9.0			11.2			3.9	
Peak Hour Factor	0.46	0.97	0.61	${ }^{0.59}$	0.96	${ }^{0.60}$	0.40	0.75	0.44	0.64	0.45	
${ }^{\text {Adj. Fow (pon) }}$ Shared Lane Trafic (\%)	72	1210	43	295	999	133	23	13	123	63	73	
Lane Group Fow (vph)	72	1253	0	295	999	133		36	123		146	
Tum Type	Prot	NA		Prot	NA	Perm	Pem	NA	Perm	Perm	NA	
Protected Phases												
${ }^{\text {Peemitited Phases }}$						2	8		8	4		
				5								
Minimum nitial (s)												
Minimum Spitit (s)	11.1	21.8		11.1	21.8	21.8	11.1	11.1	11.1	13.1	13.1	
Total Spilit (s)	24.0	45.0		22.0	43.0	43.0	23.0	23.0	23.0	23.0	23.0	
Total Spilt \%)	26.7\%	50.0\%		24.4\%	47.8\%	47.\%	25.\%	25.6\%	25.6\%	25.9\%	25.\%	
Maximum Green (s)	17.9	38.2		15.9	36.2	36.2	16.9	16.9	16.9	16.9	16.9	
Yellow Time (s)	4.0	4.8		4.0	4.8	4.8	4.1	4.1	4.1	4.1	4.1	
Al-Red Time (s)	2.1	2.0		2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
Lost Time Adjust (s)	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Lost Time (s)	6.1	6.8		6.1	6.8	6.8		6.1	6.1		6.1	
Leadlag	Lead	Lag		Lead	Lag	Lag						
Vehicle Exension (s)		3.0		3.0	3.0	3.0	30	. 0	3.0	3.0	3.0	
Recall Mode	None	C-Min		None	C-Min	C-Min	None	None	None	None	None	
Act Effet Green (s)	9.0	42.1		15.9	51.3	51.3		13.0	13.0		13.0	
Actuated $9 C$ Ratio	0.10	0.47		0.18	0.57	0.57		0.14	0.14		0.14	
vc Ratio	0.41	0.76		0.95	0.50	0.14		0.18	0.37		0.64	
Control Deay	41.4	17.4		77.9	10.1	1.9		34.3	9.6		47.6	
Queve Deay	0.0	0.0		0.0	0.0	0.0		0.0	0.0		0.0	
Total Deala	41.4	17.4		77.9	10.1	1.9		34.3	${ }_{9} 9$		4.6	
	D	B		E		A			A		D	
Approach Deay		18.7			2.3			15.2			. 0	

US 460 Corridor Safety Study
2040 No Build AM

vнв

US 460 Corridor Safety Study

	*		\geqslant								\downarrow	
Movement	EBL	Ebt	EBR	WBL	wBt	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configuraions	\%	个t		\%	$\uparrow \uparrow$	7		\uparrow	7		\dagger	
Trafici Volume (vehn)	${ }^{33}$	1174	26		959	80	9		54	40		
Future Volume (vehh)	${ }^{33}$	1174	26	174	959	80	9	10	54	40	33	
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	
PedBike Adj (A.pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parkig Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adi Sat Fiow, vehhh/n	1863	1863	1900	1863	1883	1883	1900	1863	1863	1900	1863	
Adj Fow Rate, vehh	72	1210	43	295	999	133	22	13	123	62	73	
Adj No. of Lanes			0		2		0	1		0		
Peak Hour Factor	0.46	0.97	0.61	0.59	0.96	0.60	0.40	0.75	0.44	0.64	0.45	
Percent Heary Ven, \%	2	2	2	${ }^{2}$	2	2	2	2	2	2	2	
Opposing Right Turn nifuence	Yes			Yes			Yes			Yes		
Cap, vehh	93	1712	61	313	2178	974	161	81	192	124	108	
HCM Platoon Raio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Afrive On Green	0.10	0.98	0.98	0.18	0.62	0.62	0.12	0.12	0.12	0.12	0.12	0.12
Ln Grp Delay, Sveh	50.0	4.2	4.1	72.2	10.0	7.6	35.7	0.0	41.2	40.5	0.0	0.0
Ln Gp Los	D	A	A	E	A	A	D		D	D		
Approach Vol, vehh		1325			1427			158			145	
Approach Delay, sveh		6.7			22.6			40.0			40.5	
Approach Los		A			c			D			D	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case No		2.0	3.0		8.0	2.0	4.0		7.0			
Phs Duration ($(++Y+\mathrm{Pc})$, s		10.8	${ }^{62.2}$		17.0	${ }^{22.0}$	51.0		17.0			
Change Period ($(+$ + Cl), s		6.1	6.8		6.1	6.1	6.8		6.1			
Max Green (Gmax), S		17.9	36.2		16.9	15.9	38.2		16.9			
Max Allow Headway (MAH), s			${ }^{5.1}$		$\stackrel{4.9}{101}$	${ }_{168}^{3.8}$	5.1.		${ }_{8}^{4.9}$			
Green Ext Time (g_{e})) s			15.5		0.8	0.0	22.4		0.9			
Prob of Phs Call ($\mathrm{c}_{\text {c }}$)		0.83	1.00		1.00	1.00			1.00			
Prob of Max Out (ρ. X)		0.00	0.74		0.44	1.00	0.57		0.23			
Left-Turn Movement Data												
Assigned Mvmt		1			7	5			3			
Munt Sat Fow, vehh		1774			554	1774			793			
Through Movemen Data												
Assigned Mumt					4		6		8			
Munt Sat Fow, venh			3539		889		3887		670			
Right-Tum Movement Data												
Assigned Mumt			12		14		16		18			
Munt Sat Fiow, vehh			1583		107		124		1583			
Left Lane Group Data												
Assigned Mumt			0	0		5	0	0	3			
Lane Assignment		(Prot)			L+T+R	(Prot)			L+T			

US 460 Corridor Safety Study
2040 No Build AM
2: US460/Pruden Boulevard \& Rob's Drive

Lanes in Grp	1	0	0	1	1	0	0	1
Gip Vol (v) veehh	72	0	0	145	295	0	0	35
Girs Sat fiow (s) venh/ln	1774	0	0	1550	1774	0	-	1462
Q Sere Time (g.s), s	3.6	0.0	0.0	6.5	14.8	0.0	0.0	0.0
Cycle C Clarar Time (9 c c) , s	3.6	0.0	0.0	8.1	14.8	0.0	0.0	1.6
Perm LT Sat Fow (s)l, vehhl/n	0	0	0	1273	0	0	0	1336
Shared LT Sat Fiow (s_sh), vehh/ln	0	0	0	0	0	0	0	1391
	0.0	0.0	0.0	10.9	0.0	0.0	0.0	10.9
Perm LT Seve Time (g-u), s	0.0	0.0	0.0	9.3	0.0	0.0	0.0	2.8
Pemm LT Q Sene Time (q_ps), s	0.0	0.0	0.0	6.5	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	1.5	0.0	0.0	0.0	1.2
Sene Time pre Bik (gats), s	0.0	0.0	0.0	1.5	0.0	0.0	0.0	1.2
Prop LT inside Lane (P L L	1.00	0.00	0.00	0.43	1.00	0.00	0.00	0.63
Lane Grp Cap (c), vehh	${ }_{9} 9$	0	0	245	313	0	0	${ }^{242}$
VIC Ratio (${ }^{\text {a }}$	0.77	0.00	0.00	0.59	0.94	0.00	0.00	0.14
Avail Cap (c.al), venh	${ }_{3} 33$	0	0	346	313	0	0	340
Ustream Filer (1)	0.79	0.00	0.00	1.00	1.00	0.00	0.00	1.00
Unitorm Delay (d1), sveh	39.8	0.0	0.0	38.2	36.6	0.0	0.0	35.4
Incr Delay (d2), sveh	10.2	0.0	0.0	2.3	35.6	0.0	0.0	0.3
Intital D Dealy ((3), sweh	0.0	0.0	0.0	0.0	${ }^{0.0}$	0.0	0.0	0.0
Contro Dealay (d), sveh	50.0	0.0	0.0	40.5	${ }^{72.2}$	0.0	0.0	35.7
1st-Term Q (al), vell/n	1.7	0.0	0.0	3.5	7.2	0.0	0.0	0.8
2 nd -Term Q (Q2), venl/n	0.3	0.0	0.0	0.2	3.1	0.0	0.0	0.0
3 3rd-Term Q (a3), vell/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%oile Back of P Factor (f.B\%)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00
\%oile Back of (50%), veh/n	2.0	0.0	0.0	3.7	10.3	0.0	0.0	0.8
\%rie Storage Raio (RQ\%)	0.20	0.00	0.00	0.85	0.65	0.00	0.00	0.06
Initial Q ((ab) , veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) Q (ae), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Deay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
${ }_{\text {Sata }}^{\text {Satas, }}$ (as), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat app (cs), venh	0	0	0	0	0	0	0	0
Initial Q Cliar Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Midede Lane Group data								
Assigne Mumt	0	$\stackrel{2}{2}$	0	4	0	6	0	8
Lane Assignment								
Lanes in Gip	0	2	0	0	0	1	0	0
	0	${ }_{1779} 99$	0	0	0	${ }^{617}$		0
$\mathrm{G}_{\text {Grp Sat Fow (s), venh/ln }}$	0	${ }_{1730}^{1770}$	0	0	0	1770	0	0
Q Seve Time (9 . s), s	0.0	${ }^{13.6}$	0.0	0.0	0.0	1.8	0.0	0.0
Cycle Q Clear Time (g.c), s	0.0	${ }^{1316}$	0.0	0.0	0.0	1.8	0.0	0.0
Lane Grip Cap (c), vehh	0	2178	0	0	0	869	0	0
VIC Ratio (X)	0.00	0.46	0.00	0.00	0.00	0.71	0.00	0.00
Avail Cap (c.al), venh		2178		0	O	869	0	0
Ustream Filter (1)	0.00	1.00	0.00	0.00	0.00	0.79	0.00	0.00
Unitiom Dealay (d1), sveh	0.0	${ }^{9.3}$	0.0	0.0	0.0	0.4	0.0	0.0
Incr Delay (d2), Sveh	0.0	0.7	0.0	0.0	0.0	3.8	0.0	0.0
Intital Q Delay (d3), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (d), sveh	0.0	10.0	0.0	0.0	0.0	4.2	0.0	0.0
1st-Tem Q Q (a), , vel/n	0.0	6.5	0.0	0.0	0.0	0.3	0.0	0.0

US 460 Corridor Safety Study

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

S 460 Corridor Safety Study

3: US460/Pruden Boulevard \& Kings Fork Rd

US 460 Corridor Safety Study
3. US460/Pruden Boulevard \& Kings Fork Rd

Lane Group	EBL	EBT	EBR WBL	WBt	WBR	NBL	NBT	NBR	SBL	SBT	
Queue Length 50 th (t)	102	238	19	150	5		153			~ 175	
Queue Length 95th (t)	157	${ }^{323}$	15	250	27		166			\#181	
Interal Link Dist (ti)		278		2419			2100			930	
Turn Bay Length (tt)	165		250		145						
Base Capacity (vph)	275	45	265	1548	762		385			139	19
Stavation Cap Reductn		0			0		0			0	
Spillback Cap Reduct	0	0	0	0	0		0			0	
Storage Cap Reductn	0	0	0	0	0		0			0	
Reduced V C Ratio	0.68	0.58	0.12	0.45	0.99		0.83			1.55	
Intersection Summay											
Natural Cyde: 70Control Type: Actuated-Coordinated											
Queue show is maximum after two crycles.											
\# 95th percentil vovume exceeds capacily, queve may be longer.											
Splilis and Phases: 3: US460PPruden Boulverad \& Kings Fork Rd											
$\%_{01}$	$\leftarrow_{02(R)}$						t^{64}				
$\checkmark 65$	$\rightarrow 6$							${ }_{88}$			

vнв
Snanto 2 Rem

US 460 Corridor Safety Study
3: US460/Pruden Boulevard \& Kings Fork Rd

	\%											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configuraions	\%	个		${ }^{1}$	14	\%		¢			4	
Traffic volume (vehh)	155	1016		11	657	65	1	113	95		46	
Future Volume (vehh)	155	1016	0	11	657	65	1	113	95	104	46	64
Number	1	6	16	5		12	3	8	18	7	4	14
Initial Q, veh	0	0	-	0	0	,	0	0	0	0	0	
PedB-Bike Ad (A.pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Sus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Ad Sat Fow, vehh/ln	1883	1883	1900	1883	1863	1863	1900	1863	1900	1900	1863	1863
Adj Fow Rate, vehh	187	1129	0	31	699	72	4	169	146	139	77	103
Adj No.ofl Lanes	1	2	0	1	2	1	0	1	-	0	1	
Peak Hour Factor	0.83	0.90	0.92	0.35	0.94	0.90	0.25	0.67	0.65	0.75	0.60	0.6
Percent Heary ven, \%	2	2	2	2	2	2	2	2	2			
Opposing Right Turn nfiuence	Yes			Yes			Yes			Yes		
Cap, vehh	223	1927	0	53	1609	720	41	134	113	134	40	32
HCM Palaon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0
Prop Arive On Green	0.13	0.54		0.03	0.45	0.45	0.20	0.20	0.20	0.20	0.20	0.2
Ln Grp Delay, sveh	48.7	14.4	0.0	51.5	17.4	14.3	121.4	0.0	0.0	184.9	0.0	
Ln Gip Los	D	B		D	B	B	F			F		
Approach Vol, vehh		1316			802			319			319	
Approach Delay, sveh		19.3			18.5			121.4			135.3	
Approach LoS		в			в			F			F	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case No		2.0	3.0		7.0	2.0	4.0		8.0			
Phs Duration ($G+Y+R \mathrm{C})$, S		17.3	47.7		25.0	9.2	55.8		25.0			
Change Period ($(+\mathrm{Rc}$), S			6.8		${ }^{6.8}$	${ }^{6.5}$	${ }^{6.8}$		${ }^{6.8}$			
Max Green (Gmax), s ${ }^{\text {a }}$		14.0 3	${ }_{48}^{38.2}$		$\begin{array}{r}18.2 \\ \hline 5 \\ \hline\end{array}$	$\begin{array}{r}13.5 \\ 38 \\ \hline\end{array}$	${ }_{88}^{38}$		$\begin{array}{r}18.2 \\ 5 \\ \hline\end{array}$			
Max Alow Headwa (MAH), s		${ }_{113}^{3.6}$	${ }_{14.8}^{4.8}$		500	${ }^{3.8}$	-4.8		502			
		11.1	${ }^{14.1}$		20.2	3.6	21.2		20.2			
Green Ext Time (g_e), s		0.1	${ }^{13.6}$		${ }^{0.0}$	0.0	10.9		0.0			
Prob of Phs Call ($(-$. c)		${ }^{0.99}$	1.00		${ }^{1} 100$	0.54	1.00		1.00			
Probo of Max Out (ρ_{-})		1.00	0.41		1.00	0.00	0.57		1.00			
Left-Tum Movement Data												
Assigned Mvmt		1			7	5			3			
Mumt Sat Fow, vehh		1774							0			
Through Movemen Data												
Assigned Mwmt							6		8			
Mvmi Sat Fiow, vehh			3539		199		3632		661			
Right-Tur Movement Data												
$\overline{\text { Assigned Mvmt }}$			12		14		16		18			
Munt Sat Fow, vehh			1583		1583		0		558			
Left Lane Group Data												
Assigned Mvmt						5	0					
Lane Assigmment		(Prot)			L+T	(Prot)			LTT+R			

US 460 Corridor Safety Study

: US460/Pruden Boulevard \& Kings Fork R

US 460 Corridor Safety Study

2 2n-T-erm Q (Q2), vehl/n	0.0	0.2	0.0	0.0	0.0	0.2	0.0	0.0	
3 3rd-Term Q Q (Q3), vehlin	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of F Factor (\ddagger B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%\%ile Back of Q (50\%), veh/n	0.0	6.0	0.0	0.0	0.0	9.4	0.0	0.0	
\%ile Storage Raiio (RO\%)	0.00	0.06	0.00	0.00	0.00	0.09	0.00	0.00	
Initala $($ (ab), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) $Q(Q e)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sato (as), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), venh	0	0		-		0	0	0	
Intial Q Cliea Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mumt	0	12	0	14	0	16	0	18	
Lane Assignment		R		R					
Lanes in Grp	0	1	0	1	,	0	0	0	
Grp Vol (v) vehh	0	72	0	103	0	0	0	0	
Gip Sat fow (s) vehh/l/	0	1583	0	1583	0	0	0	0	
Q Sene Time (g.s.s.s	0.0	2.3	0.0	5.0	0.0	0.0	0.0	0.0	
Cycle Q Clear Time (C -), s	0.0	2.3	0.0	5.0	0.0	0.0	0.0	0.0	
Prot RT Sat Fiow ($S_{\text {S }}$ R, verhhln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green ($\mathrm{Q}_{\text {R }) \text {) } \text { s }}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P.R.	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.46	
Lane Gip Cap (c), vehh	0	720	0	320	0	0	0	0	
VIC Ratio (X)	0.00	0.10	0.00	0.32	0.00	0.00	0.00	0.00	
Avail Cap (c.al), vehh	0	${ }^{720}$	0	320	0	0	0	0	
Ustrseam Filler (I)	0.00	0.86	0.00	1.00	0.00	0.00	0.00	0.00	
Unitorm Deala (d1), sveh	0.0	14.0	0.0	30.6	0.0	0.0	0.0	0.0	
Incer Delay (d2), sven	0.0	0.2	0.0	0.6	0.0	0.0	0.0	0.0	
Intiala O Dealay (d3), slveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Dealay (d), sveh	0.0	14.3	0.0	31.2	0.0	0.0	0.0	0.0	
$1 \mathrm{Ist-Term} \mathrm{Q} \mathrm{(Q1)}$,	0.0	1.0	0.0	2.2	0.0	0.0	0.0	0.0	
2 2nd-Term Q (02) , venl/	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
3 3rd-Term Q Q Q \% , vehl/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Eack of F Factor (fi. $\mathrm{B} \%$)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%,ile Back of (5 (50\%), venl/n	0.0	1.1	0.0	${ }^{2.2}$	0.0	0.0	0.0	0.0	
\%ilie Storage Raio (RO\%)	0.00	0.19	0.00	1.13	0.00	0.00	0.00	0.00	
Initial Q (ab), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residua) Q (ae), veh	0.0 0.0	0.0 0.0	${ }_{0}^{0.0}$	${ }_{0}^{0.0}$	0.0	0.0	0.0	0.0	
SatQ (as, ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), venh	0	0	0	0	0	0	0	0	
Initial Q Cliear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summay									
HCM 2010 CHIT Deay		${ }^{44.3}$							

vHB
20.5

US 460 Corridor Safety Study
2040 No Build AM
Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

frevel Time (s)
Peak Hour Factor
Adj. Fow (yph)

$\begin{array}{llllllllllll} \\ \begin{array}{l}\text { slared Lane Trafic (\%) } \\ \text { ane Group Fiow (vph) }\end{array} & 18 & 1247 & 0 & 18 & 731 & 132 & 0 & 128 & 0 & 0 & 214\end{array}$
 Protected Phases
Pementited hases
pefiector Phase vector Phase
imum nitial (s)
nimum nitial

Heximum Green (s)

adilag

5.0 1.8 18.8 2.0 2.0 11.2 4.8 4.8 2.0 0.0 6.8

15.0 21.8 46.0 451.0 39.2 4.8 2.8 0 0 6

\qquad 15.0
21.8
41.0
51.10
39.2

 To Reduce (s) ecall Mode ctuated $g C R$
ICRatio
Control Delay
Control Delay
a wueue Delay

US 460 Corridor Safety Study
4. Providence $\quad 2040$ No Build AM

VHB
Synchro 9 Report
2040 No Buid AM.syn

US 460 Corridor Safety Stud

											\downarrow	
Movement	EBL	${ }_{\text {EBT }}$	EBR	WBL	WBT	WBR	NBL	NBT	NBR		SBT	
Lane Configuraions	*	th		7	${ }^{14}$	7		4			4	
Traficic Voume (venh)		1041								118		
Future Volume (vehh)	9	1041	77	6	651	78	44	25	15	118	35	
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj (A.pot)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Aj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adi Sat Fow, vehhlln	1863	1863	1900	${ }^{1883}$		1863	1900	1863	1900	1900	1863	1900
Adj Fow Rate, vehh	18	1132	115	18	${ }^{731}$	132	59	36	33	144	58	
Adi No. of Lanes	1	2	0	1	2	1	0	1	0	0	1	
Peak Hour Factor	0.50	0.92	0.67	0.33	0.89	0.59	0.75	0.69	0.46	0.82	60	${ }^{1.33}$
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2		
Opposing Right Tum n lifuence	Yes			Yes			Yes					
Cap, venh	38	1592	162	38	1736	77	184	109	74	271	81	
HCM Platoon Raio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Afrive On Green	0.02	0.49	0.49	0.02	0.49	${ }^{0.49}$	0.17	0.17	0.17	0.17	0.17	
Ln Grp Deala, Sveh	40.4	14.6	14.6	40.4	10.8	9.3	24.5	0.0	0.0	26.8	0.0	
Angip Los	D	B	B	D	B	A	c	128		c		
Approach Delay, siveh		${ }_{1205}^{1260}$			${ }_{112}^{881}$			${ }^{128}$			${ }_{268}^{214}$	
Approach LoS		,			B			24.5			c	
Timer:		1	2	3	4	5	6	1	8			
Assigned Phs		1	2		4	5	6		8			
Case No		2.0	3.0		8.0	2.0	4.0		8.0			
Phs Duraion ($6+Y+$ Re), s		8.2	38.6		18.1	8.2	38.6		18.1			
Change Period ($(+R \mathrm{Co}$), s		6.8	6.8		6.8	6.8	6.8		*6.8			
Max Green (Gmax), s		11.2	39.2		19.2	11.2	39.2		*20			
Max Alow Headway (MAH), S		3.6	4.7		5.0	3.6	4.7		5.0			
		2.7	10.6		10.1	2.7	19.7		6.3			
Green Ext Time (gee), s			15.2		1.2		12.1		1.5			
Prob of Phs Call ($\mathrm{\rho}_{\text {c }}$)		0.28	1.00		1.00		1.00		1.00			
Prob of Max Out (p -)		0.00	0.42		0.22	0.00	0.58		0.04			
Lefe-Tur Movement Data												
Assigned Mvmt		177			7	${ }^{5}$			${ }^{3}$			
Mvmit Sat Fow, vehh		1774			1025	1774			596			
Through Movement Data												
Assigned Mumt			2		4		6		8			
Munt Sat Fiow, vehh			3539		467		3245		629			
Right-Tur Movement Data												
Assigned Mvmt									18			
Mvit Sat Fow, velh			1583		89		329		426			
Left Lane Group Dala												
Assigned Mvmt		1	0	0		5	0	0				
Lane Assigment		(Prot)			L+T+R	(Prot)			LT+TR			
Vнв										Synchro 9 Repor 2040 No Build AM.syn		

US 460 Corridor Safety Study

vHB

US 460 Corridor Safety Study

$2 \mathrm{nd-T-em} \mathrm{Q} \mathrm{(Q2)}$,	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	
3 Cr -Tem Q Q © 3) , vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%sile Back of Q Factor (f.E\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%file Back of ((50\%), vehlin	0.0	4.2	0.0	0.0	0.0	9.0	0.0	0.0	
\%ole Storage Raio (RO\%)	0.00	0.04	0.00	0.00	0.00	0.59	0.00	0.00	
Initial Q (ab), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resiciual) $Q($ (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q (OS), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs, veehh		0	0	-	0	0	0		
Intital Q Clear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		R				T+R			
Lanes in Grp	0	1	0	0	0	1	0	0	
Gip Vol (v) vehh	0	132	0	0	0	630	0	0	
Gir Sat Fow (s), vehhln	0	1583	0	0	0	1805	0	0	
Q Seve Time (g.s), s	0.0	3.0	0.0	0.0	0.0	17.7	0.0	0.0	
Cycle Q Clear Time (g e 0), s	0.0	3.0	0.0	0.0	0.0	17.7	0.0	0.0	
Prot RT Sat Fow ($\mathrm{S}_{\text {R }}$), vehh/l/	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green (QR), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outiside Lane (P.R)	0.00	1.00	0.00	0.06	0.00	0.18	0.00	0.26	
Lane Gip Cap (c), vehh	0	77	0	0	0	885	0	0	
VIC Ratio (X)	0.00	0.17	0.00	0.00	0.00	0.71	0.00	00	
Avail Cap (c.a), venh	0	957	0	0	0	1090	0	0	
Ustream Filler (1)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), sveh	0.0	9.2	0.0	0.0	0.0	12.9	0.0	0.0	
Incr Delay (d2), sven	0.0	0.1	0.0	0.0	0.0	1.7	0.0	0.0	
Initial Q Delay (33) sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Dealay (d), Sven	0.0	9.3	0.0	0.0	0.0	14.6	0.0	0.0	
1 1st-Tem Q (Q1), vehln	0.0	1.3	0.0	0.0	0.0	8.8	0.0	0.0	
2 nd -Term Q (Q2), venln	0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.0	
3 3rd-Term Q (Q3), vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Eack of Q F Fatoor (i.B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%oile Back of (50%), vehln	0.0	1.3	0.0	0.0	0.0	9.2	0.0	0.0	
\%.aie Stirage Ratio (RO\%)	0.00	0.31	0.00	0.00	0.00	0.60	0.00	0.00	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual Q Q(e), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat olay (dst, sveeh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sata (Qs, , ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), venh	0	0	0	0	0	0	0	0	
Initial Q Clear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summary									
HCM 2010 CrITI Delay HCM 2010 OS		15.1							
Notes									

$\frac{\text { Notes }}{\text { HCM } 2010 \text { computational engine requires equal dearance times for the phases crossing the barie }}$

US 460 Corridor Safety Study

	\rightarrow	7	\checkmark	\leftarrow	4		
Lane Group	EBT	EBR	WBL	wbt	NBL	NB	
Lane Configuraions	\uparrow			$\uparrow \uparrow$			\%
Traficic Volume (vph)	1159		0				2
Future Volume (vph)	1159		0	738	0		2
Ideal Fow (vhho)	1900	1900	1900	1900	1900		
Lane Uuil. Factor	0.95	0.95	1.00	0.95	1.00		1.00
Ft						0.86	
${ }^{\text {Fltprotected }}$							
Sald. Fow (root)	3539	0	0	3539	0		
Link Soeed (mon)	535	0	0	S03			
Link Dispeaname (mpl)	55				25		
Trave Time (s)	${ }^{24.4}$			5.8	31.8		
Peax Hour Factor	0.96	0.92	0.92	0.95	0.25		
Adj. Fow (vph)	1207	0	0	777	0		8
Shared Lane Traficic (\%)							
Lane Group Fow (ph)	1207	0	0	777	0		8
Sign Contol	Free			Free	Stop		
Intersection Summay							
Area Type:	her						
${ }_{\text {Intersection Capacily }}^{\text {Analily }}$	420.0\%				Level	Ser	

VHB

VHB	$\begin{array}{c}\text { Synchro } 9 \text { Repor } \\ 2040 \text { No Buid dM. sym }\end{array}$

US 460 Corridor Safety Study 6: Old Suffolk Rd \& US 460/Windsor Boulevard										2040 No Build AM		
		\rightarrow				4		\uparrow	+	-	\downarrow	\checkmark
Lane Group	EbL	Ebt	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL		
Lane Configuraions		$\uparrow \uparrow$	7	${ }^{3}$	个 \uparrow			4	7		4	
Iratic Voviue (von) Future Voume (von)	${ }_{4}^{4}$	${ }_{768}^{768}$	${ }_{20}^{20}$	${ }_{24}^{24}$	${ }_{494}^{494}$	0	${ }_{26}^{26}$	${ }_{3}^{3}$	${ }_{74}^{74}$	1	0	
Ideal Fow (vphol)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	000
Storage Length (t)	0		340	400		0	0		300	0		
Storage Lanes	0		1	1		0	0		1	0		
Taper Length (ti)	${ }^{25}$			${ }^{125}$			25			O		
Lane Uill Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ft			0.850						0.850		0.932	
Fit Protected		0.999		0.950				0.960			0.976	
Satd. Flow (prot) Flt Permitted	0	$\begin{array}{r} 3536 \\ 0.999 \end{array}$	1583	$\begin{aligned} & 1770 \\ & 0.950 \end{aligned}$	3539	0	0	$\begin{aligned} & 1788 \\ & 0.960 \end{aligned}$	1583	0		
Satd. Fiow (perm)	0	3536	1583	1770	3539	0	0	1788	1583	0	1694	
Link Speed (mph)					55			45			45	
Link Distance (ti)		3402			5235			2330			2290	
		${ }^{42.2}$			${ }^{64.9}$			${ }^{33.8}$			${ }^{34.7}$	
Peak Hour factor	${ }^{0.388}$	${ }^{0.89}$	0.80	${ }^{0.68}$	${ }^{0.90}$	0.92	0.41	0.25	0.34	0.25	0.92	0.25
Adi. Fow (vph)	11	863	25	35	549	0	63	12	218	4		
Shared Lane Traficic (\%)												
Lane Group Fow (vph)	0	874	25	35	549	0	0	75	218	0		
Sign Control		Free			Free			Stop			p	

Hiersection Summay Other
Area Type:
Controp Type: Unsignalized Inersection Capacaity Utirza \qquad CU Level of Senice A

VHB	Synchro 9 Report 2040 No Build AM..syn

US 460 Corridor Safety Study
6: Old Suffolk Rd \& US 460/Windsor Boulevard

$\left.\begin{array}{llllllllllllll}\text { Mumt Fow } & 11 & 863 & 25 & 35 & 549 & 0 & 63 & 12 & 218 & 4 & 0 & 4\end{array}\right]$

VHB	$\begin{array}{c}\text { Synchro 9Report } \\ \text { 2040 No Suid AM.syn }\end{array}$

US 460 Corridor Safety Study
2040 No Build AM

US 460 Corridor Safety Study

US 460 Corridor Safety Study
7: Dominion Way \& US 460/Windsor Boulevard

US 460 Corridor Safety Study
7: Dominion Way \& US 460/Windsor Boulevard

US 460 Corridor Safety Study
7: Dominion Way \& US 460/Windsor Boulevard
2040 No Build AM

VHB

1: US 460/Pruden Boulevard \& Northfield Drive

VHB
Synchro9 Report
2040 No Build PM.syn

2: US460/Pruden Boulevard \& Rob's Drive

	*	\rightarrow	\rangle	\checkmark	\leftarrow			\uparrow			\downarrow	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SB	
Lane Configuraions	\%	个 \uparrow		*	$\uparrow \uparrow$	7		A	7			
Traftic Volume (vehh)	6	1442	5	27	${ }_{1520}^{1520}$	${ }_{140}^{140}$	${ }_{8}^{8}$	8	${ }_{39}^{39}$	${ }_{35}^{35}$		
Future Voume (venh)			5				8			${ }_{7}$		
Number	1	6	16	5	2	12	3	8	18	7		
Initial Q, veh	0	0	0	0	0	0	0	0	0	0		
Ped-Bike Adj (A.pot)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.0
Paking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.0	
Adi Sat Fow, vehhl/n	1883	1863	1900	1863	1863	1863	1900	1863	1863	1900	186	
Adj Flow Rate, vehh	13	1487	8	46	1583	233	20	11	89	${ }_{55}$		
Adj No. of Lanes	1	2	0	1	2		0	1	1	0		
Peak Hour Factor	0.46	0.97	0.61	0.59	0.96	0.60	0.40	0.75	0.44	0.64	0.4	
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2		
Opposing Right Tum n ifuence	Yes			Yes								
Cap, vehh		2562	14	61	2581	1155	132	61	132	132		
HCM Palaon Ratio	2.00	2.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Arive On Grieen	${ }^{0.03}$	1.07	1.07	0.03	0.73	0.71	0.08	0.08	0.08	0.08	0.08	
Ln Gip Delay, sven	58.0	0.7	0.7	69.8	8.4	5.1	47.4	0.0	54.9	51.5		
Lngiplos	E	A	A	E	A	A	D		D	D		
Approach Vol, venh		1508			1862			120				
Approach Delay, sveh		1.2			9.5			53.0			51.	
Approach LOS		A			A			D				
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case №		2.0	3.0		8.0	2.0	4.0		7.0			
Phs Duration ($G+\gamma+\mathrm{Rc}$), s		7.7	87.0		15.3	9.9	84.9		15.3			
Change Period ($Y+$ Rc), s		6.1	6.8		${ }^{6.1}$	6.1	6.8		6.1			
Max Green (Gmax), s		14.9	55.2		20.9	14.9	55.2		20.9			
Max Allow Headway (MAH), S		3.8	5.0		4.8	3.8	5.0		4.8			
		2.8	26.1		8.6	4.8	2.0		8.0			
Green Ext Time (q_e), s		0.0	25.9		0.6	0.0	43.7		0.6			
Prob of Phs Call (ρ c)		0.33	1.00		1.00	0.75	1.00		1.00			
Prob of Max Out (ρ_{\sim}. ${ }^{\text {a }}$		0.00	0.88		0.01	0.00	0.78		0.01			
Left-Turn Movement Data												
Assigned Mvmt		1				5			3			
Mvmt Sat Fow, velh		174			876	1774			940			
Through Movement Data												
Assigned Mvmt			2				${ }^{6}$		8			
Mumt Sat Fow, vehh			3539		110		3610		739			
Right-Turn Movement Data												
Assigned Mvmt			12		14		16		18			
Mvnt Sat Fow, vehh			1583		190		19		1583			
Left Lane Group Data												
${ }_{\text {Assigned }}$ Wumt			0	0		5	0	0	${ }^{3}$			
Lane Assignment		(Prot)			LTT+R	(Prot)			L+T			

2: US460/Pruden Boulevard \& Rob's Drive

2040 No Build

Synchro 9 Report
2040 No Build PM.syn

vнв

	\%		7	\checkmark				\uparrow			\downarrow	
Movement	EBL	EBT	EBR	WBL	wBt	WBR	NBL	nBt	NBR	SBL	SBT	
Lane Configuraions	\%	个		\%	$\uparrow \uparrow$	7		4			4	
Traffic Volume (vehh)	120	1234	11	108	1189	200	6	142	31	94	84	
Future Volume (vehh)	120	1234	11	108	1189	200	6	142	31	94	84	105
Number	1	6	16	5	2	12	3	8	18	7	4	14
Initial Q, veh	0	0			0	0	0	0	0	0	0	
PedBike Adj (A pot	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parkiog Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adij Saf Fow, vehh/ln	1863	1863	1900	1863	1863	1883	1900	1863	1900	1900	1863	1863
Adj Fow Rate, vehh	145	1371	12	309	1265	222	24	212	48	125	140	169
Adj No. of Lanes	1	2	0	1	2		0	1	0	0		
Peak Hour Factor	0.83	0.90	0.92	0.35	0.94	0.90	0.25	0.67	0.65	0.75	0.60	0.62
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2	2	
Opposing Right Turn Infuence	Yes			Yes			Yes			Yes		
Cap, venh	175	1608	14	250	1749	783	35	142	29	113	81	
HCM Palaoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Arive On Green	0.10	0.45	0.45	0.14	0.49	0.49	0.23	0.23	0.23	0.23	0.23	0.23
Ln Grp Delay, sveh	55.6	32.9	32.7	177.8	24.0	17.1	233.9	0.0	0.0	241.3	0.0	37.5
Ln Grp LOS	E	c	c	F	c	B	F					
Approach Vol, vehh		1528			1796			284				
Approach Delay, sveh		35.0			49.6			23.9			62.0	
Approach LOS		c			D			F			F	
Timer.		1	2	3	4	5	6	7	8			
Assigned PhsCaseNo		1	2		4	5	6					
		2.0	3.0		7.0	2.0	4.0		8.0			
		16.8	61.2		32.0	22.0	56.0		32.0			
Change Period (Y +RC), S		6.0	6.8		6.8	6.5	6.8		6.8			
Max Green (Gmax), s			49.2		25.2	15.5	49.2		25.2			
${ }_{\text {Max Alow Headway ((MAH), }}^{\text {Max }}$			4.8		4.8	3.8	4.8		4.8			
		10.8	32.9		27.2	17.5	39.5		27.2			
Max Q Clear (g_c+11), s Green Ext Time (g_e), s			13.9		0.0	0.0	8.7		0.0			
Prob of Phs Call (p.c)		0.99	1.00		1.00	1.00	1.00		1.00			
Prob of Max Out (p.x) 0.23 0.87 1.00 1.00 0.94												
Assigned Mvot		1			7	5			3			
Mvmt Sat Fow, vehh		1774			281	1774			0			
Through Movement Data												
Assigned Mwnt					4		6		8			
Mvist Sat Fiow, venh			3539		353		3595		621			
Right-Tum Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmi Sat Fow, vehh			1583		1583		31		126			
Leff Lane Group Data												
(tane Assigmment			0	0		5	0	0				
		(Prot)			L+T	(Prot)			L+T+R			
vнв										Synchro 9 Report 2040 No Build PM.syn		

vнв

vнв

4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

	*										\downarrow	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR			
Lane Configuraions	\%	\uparrow		${ }^{7}$	14	7		4			4	
Trafic Volume (vehh)	11	${ }^{1231}$	60	26	1198	${ }^{138}$	100		11	70	63	
Future Volume (vehh)	11	1231	60	26	1198	138	100	38	11	70	63	
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh	0	0		0	0	0	0	0	0	0	0	
Pedi-Bike Adj (A.pbT)	1.00		1.00	1.00		1.00	1.00					
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adi Sat Fiow, vehhln	1883	1863	1900	1863	1863	1883	1900	1863	1900	1900	1883	1900
Adj Fow Rate, vehh	22	1338	90	79	1346	234	133	55	24	85	105	
Adj No. of Lanes	1	2	0		2	1	0	1	0	0		
Peak Hour Factor	0.50	0.92	0.67	0.33	0.89	0.59	0.75	0.69	0.46	0.82	0.60	
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2	2	
Opposing Right Turm nifuence	Yes			Yes			Yes			Yes		
Cap, vehh	41	1833	123	101	2048	916	202	71		153	166	
HCM Platoon Raio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Afrive On Green	0.02	0.54	0.54	0.06	0.58	0.58	0.19	0.19	0.19	0.19	0.19	0.19
Ln Gip Delay, sveh	58.8	19.3	19.4	58.3	14.9	10.5	45.6	0.0	0.0	39.9	0.0	
Ln Giplos	E	$\stackrel{\text { B }}{1450}$	B	E	16	B	D			D		
Approach Delay, ssveh		${ }_{20.0}$			16.4			45.6			39.9	
Approach LOS		в			B			D			D	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	,				4		8			
Case No		2.0	3.0		8.0	2.0	4.0		8.0			
Phs Duraion ($(+Y+$ + C$)$, S		9.1	64.3		26.0	12.5	60.9		26.0			
Change Period ($(+\mathrm{Rc}$), s		${ }_{6}^{6.8}$	6.8		6.8	6.8	6.8		*6.8			
Max Green (Gmax), s		9.2	60.2		20.2	9.2	60.2		* 21			
Max Alow Headway (MAH), s			4.7		${ }^{5} 14$	${ }^{3.6}$	4.7		5.1			
Max Q Clear ($Q_{\text {coctil }) \text {, }}$ S			27.7		14.6	6.4	32.0		18.7			
Green Ext Time (gee), s			24.7		1.1	0.0	${ }^{22.1}$		0.5			
Prob of Phs Call ($\mathrm{c}_{\text {c }}$)		0.46	${ }^{1.00}$		1.00	0.89			1.00			
Prob of Max Out (ρ_{-})		0.02	0.72		0.84	1.00	0.76		1.00			
Leff-Turn Movement Data												
$\overline{\text { Assigned Mvmt }}$		1			7	5			3			
Munt Sat Fow, venh		1774			531	1774			741			
Through Movement Data												
Assigned Mvmt			${ }^{2} 2$		4		${ }^{6}$		8			
Mvmit Sat Fow, venh			3539		860		3367		368			
Right-Tum Movement Data												
Assigned Mvmt			12		14		16		10			
Mvmit Sat Fow, veeh			1583		176		226		142			
Leff Lane Group Data												

4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

$2 \mathrm{nd-TermQ}$ Q (Q2), venl/n	0.0	0.2	0.0	0.0	0.0	0.6	0.0	0.0
${ }^{30 \cdot-T-T e m ~ Q ~(Q a 3) ~ v e n h ~}$	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%oile Back of Q (50\%), , , ehln	0.0	12.7	0.0	0.0	0.0	15.0	0.0	0.0
\%oile Storae Ratio ($\mathrm{RO} \%$)	0.00	0.12	0.00	0.00	0.00	0.99	0.00	0.00
Intital $Q(a b)$, veh						0.0		0.0
Final (Residual) Q (e), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q (Qs), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), vehh	0	0	0	0	0	0	0	0
Intial Q C Clear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Right Lane Group Data								
Assigned Mumt	0	12	0	14	0	16	0	18
Lane Assigment		R				T+R		
Lanes in Gip	0	,	0	0	0	1	0	0
Gip Vol (v, veenh	0	${ }^{234}$	0	0	0	726	0	0
$G \mathrm{GrSatF}$ Fow (s), venh/ln	0	1583	0	0	0	1823	0	0
Q Seve Time (g (s), S	0.0	7.3	0.0	0.0	0.0	30.0	0.0	0.0
Cycle Q Cliar Time (g co, s	0.0	7.3	0.0	0.0	0.0	30.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prot RT Eff Green (q,R), s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Prop RT Outiside Lane (P - R)	0.00	1.00	0.00	0.11	0.00	0.12	0.00	0.11
Lane Gip Cap (c), vehh		916	0	0	0	992	0	0
VIC Ratio (X)	0.00	0.26	0.00	0.00	0.00	0.73	0.00	0.00
Avail Cap (c.al), vehh	0	959	0	0	0	1104	0	0
Ustream Filter (1)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00
Unifom Delay (d1), sveh	0.0	10.4	0.0	0.0	0.0	17.1	0.0	0.0
Incr Delay (d2), sven	0.0	0.1	0.0	0.0	0.0	2.3	0.0	0.0
Initial Q Deelay ((3), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Dealy (d), sven	0.0	10.5	0.0	0.0	0.0	19.4	0.0	0.0
$1 \mathrm{Ist-Term} \mathrm{Q}$ (Q1), vehln	0.0	3.1	0.0	0.0	0.0	14.9	0.0	0.0
2nd-Term Q (02), vehlin	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0
3 3rd-Tem Q (Q3), veh/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
\%ile Back of Q Factor (f.E\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00
\%\%ile Back of (5 (50\%), vevh/ln	0.0 0.00	${ }^{3.2}$	0.0 0	0.0 0	0.0 0.00	${ }^{15.5}$	0.0 0.00	0.0 0.00
Initala $Q($ (ab), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Final (Residual) $Q(Q e)$, veh	0.0	0.0	0.0	0.0	0.0	0.0		0.0
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Q Qas), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sat Cap (cs), vehh	0	0	0	0	0	0	-	0
Intital Q Cliaar Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Intersection Summay								
HCM 2010 CtI Delay		21.0						
HCM 2010 LOS		c						
Notes								

HOM 2010 computational engine requires equal learance times for the phases crossing the barier.

5: Woodlawn Dr \& US460/Pruden Boulevard							2040 No Build
	\rightarrow	\geqslant	\checkmark	\leftarrow	4	p	
Lane Group	EBT	EBR	WEL	WBT	NBL	NBR	
Lane Configuraions	个t			$\uparrow \uparrow$		7	
Traficic Voume (vph)	${ }^{1297}$	2	0	${ }^{1347}$	0	2	
Future Voume (vph)	${ }^{1297}$	O20	O	${ }^{1347}$	0	000	
Ideal Fow (vphol)	1900	1900	1900	1900	1900	1900	
Lane Uili. Factor	0.95	0.95	1.00	0.95	1.00	1.00	
Ftitrotected							
Travel Time (s)Peak Hour factor							
Adi. Flow (poh)Shared (aneTrafic (\%) (\%)							
$\begin{array}{lllllll}\text { Slarectane } \\ \text { Lane crup flow (pph) } & 1353 & 0 & 0 & 1418\end{array}$							
Sign ControlIntersection Sumary							
Intersection Capacitily	n 45.9\%				ULevel	feerice A	

Inerestion Capacity Uilization 45.9\%
ICLevelísenice A

5: Woodlawn Dr \& US460/Pruden Boulevard
2040 No Build

VHB	$\begin{array}{c}\text { Synchro9 Repor } \\ \text { 2040 No Build PM..syn }\end{array}$

6: Old Suffolk Rd \& US 460/Windsor Boulevard 2040 No Buila

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	
Lane Configuraions		$\uparrow \uparrow$	7	\dagger	个t			\pm	7		4	
Traficic Voume (vph)	1		49			4	21			0		
Future Volume (vph)	1		49	69	1032	4	21	2	43	0	0	
Ideal Fow (vphol)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Storage Lenght (t)	0		340	400		0	0		300	0		
Storage Lanes	0		1	1		0	0		1	0		
Taper Lenght (ti)	25			125			25			25		
Lane Uili. Factor	0.95	0.95	1.00	1.00	0.95	0.95	1.00	1.00	1.00	1.00	1.00	
Ft			0.850		0.999				0.850		0.865	
Fitroiteced	0	3539	1583	0	3536	0	0	${ }^{0.959} 178$	1583	0	1611	
FltPermitted				0.950				0.959				
Satd. Fow (perm)	0	3539 55	1583	1770	3536 55	0	0	1786 45 1	1583	0	1611	
Link $\mathrm{Distanance} \mathrm{(t)}$		3402			5235			2230			2290	
Travel Time (s)		42.2			64.9			${ }^{33.8}$			34.7	
Peak Hour Factor	0.38	${ }^{0.898}$	${ }^{0.80}$	${ }^{0.68}$	${ }^{0.900}$	0.92	0.41	0.25	${ }^{0.34}$	0.25	0.92	
	3	658	61	101	1147	4	51	8	126	0	0	
	0	661	61	101	1151	0	0	59	126	0	12	
Sign Contol		Free			Free			Stop			Stop	

$\frac{\text { Intersection Sunman }}{\text { Area Type: }}$

Area Type:
Control Type: Unigignaized
Intersection Capacity Utirizaion 62.8
ICU Level of Senice B

VHB	Synchro9 Report 2040 No Buid Pp.syn

7: Dominion Way \& US 460/Windsor Boulevard
2040 No Build

7: Dominion Way \& US $460 /$ Windsor Boulevard

$2 \mathrm{nd-TermQ}$ Q Q2), vehln	0.0	0.1	0.0	0.0	0.0	0.2	0.0	0.0	
$3 \mathrm{Trd-Temm} \mathrm{Q} \mathrm{(03)}$,	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%sile Back of Q Factor (f.E\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	
\%oile Back of Q (50\%), vehlln	0.0	${ }_{3} 3$	0.0	0.0	0.0	4.2	0.0	0.0	
\%ilie Storage Ratio ($\mathrm{RO} \%$)	0.00	0.13	0.00	0.00	0.00	0.03	0.00	0.00	
Initala $Q(a b)$, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resicual Q Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sato (Qs), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), venh		0	0	0	0	0	0	0	
Intital Q Clear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mumt	0	12	0	14	0	16	0	0	
Lane Assignment		R		R					
Lanes in Grp	0	1	0	1	0	0	0	0	
Gip Vol (v), venh	0	5	0	39	0	0	0	0	
Gip Sat Fiow (s), vehhlln	0	1583	0	1583	0	0	0	0	
Q Seve Time (g.s), S	0.0	0.1	0.0	2.3	0.0	0.0	0.0	0.0	
Cycle Q Clear Time (g 0) , s	0.0	0.1	0.0	2.3	0.0	0.0	0.0	0.0	
Prot RT Sat fow (s. R), vehhl/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Prop RT Outiside Lane (P.R.	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Lane Gip Cap (c), vehh	0	1143	0	72	0	0	0	0	
VICRatio (${ }^{\text {(}}$	0.00	0.00	0.00	0.54	0.00	0.00	0.00	. 00	
Avail Cap (c.al), vehh	0	1143	0	${ }_{337}$	0	0	0	0	
Usitream Filter (1)	0.00	1.00	0.00	1.00	0.00	0.00	0.00	0.00	
Uniform Delay (d1), sveh	0.0	3.6	0.0	43.9	0.0	0.0	0.0	0.0	
Incr Delay (d2), siven	0.0	0.0	0.0	6.1	0.0	0.0	0.0	0.0	
	0.0	${ }^{0.0}$	0	0.0 50	0.0	0.0	0.0	0.0	
1 1st-erm Q Q (11), vehlh	0.0	0.0	0.0	${ }_{1.0}$	0.0	0.0	0.0	${ }_{0} 0$	
2nd-Term Q (02), vehln	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.0	
$3 \mathrm{cr-Term} Q$ (Q3), vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of Q Factor (f.E\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	0.00	
\%oile Back of Q $50 \% \%$, vell/n	0.0	0.0	0.0	1.1	0.0	0.0	0.0	0.0	
\%ilie Storage Ratio (RO\%)	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	
Initial ((Qb), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Residual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0 0.0	0.0	0.0	0.0 0.0	${ }_{0}^{0.0}$	0.0 0.0	${ }_{0}^{0.0}$	
Sat Cap (cs), venh	0	0	0	0	0	0	0	0	
Initial Q Cliear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Inersection Summay									
HCM 2010 Cril Delay		5.2							
HCM 2010 LOS		A							

S 460 Corridor Safety Study
2040 Build AM

US 460 Corridor Safety Study

VHB

S 460 Corridor Safety Stu
2040 Build AM
1: US 460/Pruden Boulevard \& Northfield Drive \qquad

US 460 Corridor Safety Study

US 460 Corridor Safety Study

US 460 Corridor Safety Study
2. US460/Pruden

S 460 Corridor Safety Study

US 460 Corridor Safety Study
2: US460/Pruden Boulevard \& Rob's Drive

	*		7								\downarrow	
Movement	EBL	Ebt	EBR	WBL	WBt	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuraions	*	个b		\%	$\uparrow \uparrow$	7		\uparrow	7		${ }_{4}$	
Trafici Volume (vehn)	33	1174	26		959	80	9		54	40		
Future Volume (vehh)	${ }^{33}$	1174	26	174	959	80	9	10	54	40	${ }^{33}$	
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	
PedBike Ad (A.pot)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parkig Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	
Adi Sat Fow, vehhh/n	1863	1883	1900	1883	1883	1863	1900	1863	1863	1900	1863	1900
Adj Fow Rate, vehh	72	1210	43	295	999	133	22	13	123	62	73	
Adj No. of Lanes			0		2		0	1				
Peak Hour Factor	0.46	0.97	0.61	0.59	0.96	0.60	0.40	0.75	0.44	0.64	0.45	0.63
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2	2	
Opposing Right Turn lifuence	Yes			Yes			Yes			Yes		
Cap, venh	94	1709	61	313	2172	972	162	82	193	125	109	
HCM Pataon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Arive On Green	${ }^{0.05}$	0.49	0.49	0.18	0.61	0.61	${ }^{0.12}$	0.12	0.12	0.12	0.12	0.12
Ln Grp Delay, sveh	50.7	21.3	21.2	72.	10.1	7.6	35.6	0.0	41.0	40.3	0.0	0.0
Ln Giplos	D	c	c	E	в	A	D		D	D		
Approach Vol, vehh		1325			1427			158			145	
Approach Delay, sveh		22.8			22.7			39.8			40.3	
Approach LOS		c			c			D			D	
Timer		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case No		2.0	3.0		8.0	2.0	4.0		7.0			
Phs Duration ($G+Y+$ Re), s		10.9	62.0		17.1	22.0	50.9		17.1			
Change Period ($(+\mathrm{Rc}$ c), s		${ }^{6.1}$	6.8		6.1	6.1	${ }^{6.8}$		6.1			
Max Green (Gmax), s		17.9	${ }^{34.2}$		18.9	15.9	36.2		18.9			
Max Alow Headway (MAH), s		3.8	5.1		4.9	3.8	5.1		4.9			
			${ }_{14.3}^{15.7}$		10.1 0.9	$\begin{array}{r}16.8 \\ \hline 0\end{array}$			8.7 10			
Prob of Phs Call (p-c)		0.83	1.00		1.00	1.00	1.00		1.00			
Prob of Max Out ($\mathrm{P}_{\mathrm{-}}$)		0.00	${ }_{0} .77$		0.18	1.00	0.91		0.10			
Left-Tum Movement Data												
$\overline{\text { Assigned Mvmt }}$					7	5			3			
Munt Sat Fow, venh		1774			555	1774			796			
Through Movement Data												
Assigned Mvmt			2		4		${ }^{6}$		8			
Mumt Sat Fow, venh			3539		894		3887		670			
Right-Tum Movement Data												
$\overline{\text { Assigned Mvot }}$			12		14		16		18			
Munt Sat Fow, vehh			1583		107		124		1583			
Left Lane Group Data												
Assigned Mvmt			0	0			0	0	3			
Lane Assignment		(Prot)			L+T+R	(Prot)			L+T			
Vнв										Synchro 9 Repor 2040 Build AM.syn		

S 460 Corridor Safety Study

US 460 Corridor Safety Study
2: US460/Pruden Boulevard \& Rob's Drive

US 460 Corridor Safety Study

US 460 Corridor Safety Study
3: US460/R
2040 Build AM

VHB

US 460 Corridor Safety Study
3: US460/Pruden Boulevard \& Kings Fork Rd $\quad 2040$ Build AM

	7											\checkmark
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR			
Lane Configuraions	7	个t		\$	$1 \uparrow$	7		${ }_{4}$		\$	F	
Trafici volume (venh)		1016								104		
Future Volume (vehh)	155	1016	0	11	657	65	1	113	95	104	46	64
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh		0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj (A.pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Sus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adi Sat Fow, vehh/ln	1863	1863	1900	1863	1863	1883	1900	1863	1900	1863	1863	1900
Adj Fow Rate, vehh	187	1129	0	31	699	72	4	169	146	139	77	103
Adj No.oflanes		2	0	1	2	1	0		0	1	1	
Peak Hour Factor	0.83	0.90	0.92	0.35	0.94	0.90	0.25	0.67	0.65	0.75	0.60	62
Percent Heary Ven, \%	2	2	2	2	2	2	2	2	2	2	2	
Opposing Right Tum Influence	Yes			Yes			Yes					
Cap, venh	216	1704	0	49	1389	621	34	153	130	271	223	298
HCM Pataon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Arive On Green	0.12	0.48	0.00	0.03	0.39	0.39	0.17	0.17	0.17	0.08		
Ln Grp Delay, sveh	64.8	22.9	0.0	63.6	26.4	21.6	98.3	0.0	0.0	33.8	0.0	
Ln Griplos	E	${ }^{\circ}$		E	c	c	F			c		
Approach Vol, vehh		1316			802			319			319	
Approach Delay, sveh		28.8			27.4			98.3			31.6	
Approach LOS		c			c			F			c	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6	7	8			
Case №		2.0	3.0		4.0	2.0	4.0	1.2	8.0			
Phs Duration ($G+Y+R \mathrm{c}$), S		19.4	50.0		40.7	9.6	59.8	15.7	25.0			
Change Period ($Y+\mathrm{Rc}$), s		6.0	6.8		6.8	6.5	6.8	6.8	${ }^{6.8}$			
Max Green (Gmax), s		14.0	38.2		38.2	13.5	38.2	13.2	18.2			
Max Alow Headway (MAH), s		3.6	4.8		5.1	3.8	4.8	3.7	5.1			
		13.4	18.4		11.1	3.9	28.7	8.9	20.2			
Green Ext Time (gee), s		0.0	${ }^{12.1}$		2.9	0.0	7.0	0.1	0.0			
		1.00	1.00		1.00	0.61	1.00	0.95	1.00			
								0.55				
Lefit-Tum Movement Data												
Assigned Mvot Mwnt Sat Fow, vehh		1774				$\begin{array}{r}1774 \\ \hline\end{array}$		${ }_{174} 7$	${ }_{7}$			
Through Movement Dala												
$\overline{\text { Assigned Mumt }}$			2		4		6		8			
Mwnt Sat Fiow, venh			3539		724		3632		926			
Right-Turn Movement Data												
Assigned Mumt			12		14				18			
Mwnt Sat Flow, vehh			1583		968		0		787			
Left Lane Group Data												
Assigne Mumt		1	0	0	0	5	0	7				
Lane Assignment		(Prot)				(Prot)		PriPm)				
ขНв										Synchro 9 Report 2040 Build AM.syn		

US 460 Corridor Safety Study
3. US460/Pruden Bowevard \& Kings Fork Rd

S 460 Corridor Safety Study

2 2nd-Term Q (22), vehln	0.0	0.2	0.0	0.0	0.0	0.3	0.0	0.0	
3 C 3-T-Tem Q Q (a3), vehl/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of Q Factor (IE\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%oile Back of Q (50\%), venl/n	0.0	8.3	0.0	0.0	0.0	13.3	0.0	0.0	
\%\%ile Storage Raio (RO\%)	0.00	0.09	0.00	0.00	0.00	0.12	0.00	0.00	
Initial Q (ab), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resiciual $)$ Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sata ((as), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs, venh	0	-			0		0		
Intital Q Cliear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Right Lane Group Data									
Assigned Mvmt	0	12	0	14	0	16	0	18	
Lane Assignment		R		T+R					
Lanes in Grp	0	1	0	1	0	0	0	0	
Gip Vol (v, venh	0	72	0	180	0	0	0	0	
Girs Sat Fiow (s) , veh/l/n	0	1583	0	1692	O	0	0		
Q Sene Time (q-s), s	0.0	3.2	0.0	9.1	0.0	0.0	0.0	0.0	
	0.0	3.2	0.0	9.1	0.0	0.0	0.0	0.0	
Prot RT Sat Flow (s, R), vehh/ln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prot RT Eff Green ($Q_{\text {Q }}$, , s	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Prop RT Outside Lane (P.R)	0.00	1.00	0.00	0.57	0.00	0.00	0.00	0.46	
Lane Grip Cap (c), vehh	0	${ }^{621}$	0	${ }^{521}$	0	0	0		
VIC Ratio (X)	0.00	0.12	0.00	0.35	0.00	0.00	0.00	0.00	
Avail Cap (c.al) venh	0	${ }^{621}$	0	588	0	0	0	0	
Usitream Filer (1)	0.00	0.86	0.00	1.00	0.00	0.00	0.00	0.00	
Unitom Dealay (di), sveh	0.0	21.3	0.0	29.5	0.0	0.0	0.0	0.0	
Iner Delay (22), siveh	0.0	${ }^{0.3}$	0.0	0.4	0.0	0.0	0.0	0.0	
Intial Q Delay (d3), sweh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Dealay (d), sveh	0.0	21.6	0.0	29.9	0.0	0.0	0.0	0.0	
$1 \mathrm{lst-Term}$ Q(Q1), vehln	0.0	1.4	0.0	4.3	0.0	0.0	0.0	0.0	
$2 \mathrm{end-TemQ}$ (02), vehln	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	
$3 \mathrm{Cr}-\mathrm{Temm} Q$ Q Q3), vehl/n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of F Factor (\ddagger B\%)	0.00	1.00	0.00	1.00	0.00	1.00	0.00	1.00	
\%ilie Back of (50%), venl/n	0.0	1.5	0.0	4.3	0.0	0.0	0.0	0.0	
\%file Storage Ratio (RO\%)	0.00	0.26	0.00	0.12	0.00	0.00	0.00	0.00	
Initial 0 (ab), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resiciual $)$ Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sveh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sata (ass) , ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), venh	0	0	0	0	0	0	0		
Intital Q Cliaar Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intersection Summay									
HCM 2010 Crin Dela HCM 2010 Los		$\stackrel{36.8}{\text { D }}$							

vHB
Synchro 9 Repor
20000 Buid AM.syy

US 460 Corridor Safety Study
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard 2040 Build AM

US 460 Corridor Safety Study
Providence Roadlak Pince Prive \& us460Pruden Bowevard

Хнв

US 460 Corridor Safety Stud
2040 Build AM
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

	'							\uparrow			\downarrow	\checkmark
Movement	EBL	EBt	EBR	WBL	WBt	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuraions	\%	个t		\%	$\uparrow \uparrow$	7		4			${ }_{4}$	
Trafici Volume (venh)	9	1041	77		651	78	44		15	118		
Future Volume (vehh)	9	1041	77	6	651	78	44	25	15	118	35	
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	
PedB-Bike Adj (A.pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parkig Bus Adi	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	
Adi Sat fow, venh/h	1863	1863	1900	1863	1863	1863	1900	1863	1900	1900	1863	1900
Adj Fow Rate, vehh	18	1132	115	18	${ }^{731}$	132	59	36	3	144	5	
Adj No. of Lanes		2			2		0	1				
Peak Hour factor	0.50	0.92	0.67	0.33	0.89	0.59	0.75	0.69	0.46	0.82	0.60	33
Percent Heary Ve, \%		2	2	,	2	2		2	2	2	2	
Opposing Right Turn infuence	Yes			Yes			Yes			Yes		
Cap, venh	377	1592	162	245	1736	77	184	109	74	271	81	
HCM Pataon Raio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Arive On Green	0.02	0.49	0.49	0.02	0.49	0.49	0.17	0.17	0.17	0.17	0.17	
Ln Grp Delay, sveh	8.4	14.6	14.6	10.5	10.8	9.3	24.5	0.0	0.0	26.8	0.0	
Ln Giplos	A	в	B	B	в	A	c			c		
Approach Vol, venh		1265			881			128			214	
Approach Delay, sveh		14.5			10.5			24.5			26.8	
Approach LOS		в			в			c			c	
Timer		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case No		1.1	3.0		8.0	1.1	4.0		8.0			
Phs Duration ($G+Y+$ Re), S		8.2	38.6		18.1	8.2	38.6		18.1			
Change Period ($(+\mathrm{Rc}$), s		6.8	6.8		6.8	6.8	6.8		*6.8			
Max Green (Gmax), s		11.2	39.2		19.2	11.2	39.2		'20			
Max Alow Headway (MAH), s		3.6	4.7		5.0		4.7		5.0			
Max Q Cliear (g.cti), s		2.3	10.6		10.1	2.3	19.7		6.3			
Green Ext Time (g_e), s			15.2		1.2				1.5			
Prob of frs Call (ρ.)		0.28	1.00		1.00	0.28	1.00		1.00			
Prob of Max Out ($\mathrm{\rho}_{\text {- }}$)		0.00	0.42		0.22	0.00	0.58		0.04			
Left-Turn Movement Data												
$\overline{\text { Assigned Mvmt }}$		1			7	5			3			
Munt Sat Fow, venh		1774			1025	1774			596			
Through Movement Data												
Assigned Mvot			${ }^{2}$		4		${ }^{6}$		8			
Mvit Sat Fow, venh			3539		467		3245		629			
Right-Turn Movement Data												
$\overline{\text { Assigned Mvmt }}$			12		14		16		18			
Munt Sat Flow, vehh			1583		89		329		426			
Left Lane Group Data												
Assigned Mvot							0					
Lane Assigment		(PIPIP)			LT+R	Piff)			LT+TR			

US 460 Corridor Safety Study
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard $\quad 2040$ Build AM

US 460 Corridor Safety Study
Providence Road/Lake Prince Drive \& US460/Pruden Boulevard 2040 Build AM

Notes 2011 computational engine requires equal derarance times tor the phases crossing the barie

US 460 Corridor Safety Study
5: Woodlawn Dr \& US460/Pruden Boulevard

Lane Group	EBT	EBR	WBL	wBt	NBL	NB	
Lane Conifurations	\uparrow			$\uparrow \uparrow$			\%
Traffic Volume (vph)							2
Future Volume (vph)	1159		0	738	0		2
\|deal Fow (phphl)	1900	1900	1900	1900	1900	190	
Lane Uiil. Factor	0.95	0.95	1.00	0.95	1.00		
$\underset{\text { Ftr Proected }}{\text { Fifled }}$							
Ftitermited							
Sad. FFow (perm)	3339	0	0	3539	0	161	
Link Speed (mph)	55			55	25		
Travel Time (s)	105						
Peak Hour factor	${ }_{0.96}^{24.4}$	0.92	0.92	0.95	${ }_{0}^{5.25}$		
	1207	0	0	777	0		8
Sign Control	Free			Free	Stop		
Intersection Summay							
Area Type: Control Type: Unsignalized Other							

US 460 Corridor Safety Study

| | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

MajorMinor Majorr Major2 Minorr				
Conficiting Flow All	0	0 .		604
Stage 1	.	-	-	
Stage 2				
${ }^{\text {Folownupup Howy }}$				3.32
Pot Cap-1 Maneuver - - 0 - $0{ }^{441}$				
Stage 1	.	0	- 0	
Stage 2	-	0	- 0	
Platoon blocked, \%				
Stage 1Stage 2				
Approach EB WB NB				
HCM Contro Delay, S	0	0	13.3	
нсM Los			в	
Minor LaneMajor Mvmt NBLT1 EBT EBR WBT				
HCM Contro Delay (s)		13.3		
HCM Lane Los		B		
HCM 95t \%ofie Quen)		0.1		

vнв

US 460 Corridor Safety Study
6: Old Suffoik Rd \& US 460/Windsor Boulevard
2040 Build AM

VHB | Synchro 9 Report |
| :---: |
| 2040 Buid AM.syn |

US 460 Corridor Safety Study

VHB

US 460 Corridor Safety Study
7: Dominion Way \& US 460/Windsor Boulevard

	\rightarrow	7	\checkmark	\leftarrow	4				
Movement	EBT	EBR	WBL	WBt	NBL	NBR			
Lane Conigurations	$\uparrow \uparrow$	7	\%	$\uparrow \uparrow$	$\stackrel{ }{ }$	\%			
Trafic Volume (vehh)	810	60	63			8			
Future Volume (vehh)	810	60	63	461	4	8			
Number	2	12	1	6	7	14			
Initial Q, veh	0	0	0	0	0	0			
Ped-Bike Adj (A.pbT)		1.00	1.00		1.00	1.00			
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00			
Adj Sat Fiow, vehhhln	1863	1863	1863	1863	1863	1863			
Adj Fow Rate, vehh	900	109	117	524	8	18			
Adj No. of Lanes		1			1	1			
Peak Hour Factor	0.90	0.55	0.54	0.88	0.50	0.44			
Percent Heary Ven, \%	2	2	2	2	2	2			
Opposing Right Tum lifluence			Yes		Yes				
Cap, venh	2386	1067	516	2976	47	42			
HCM Platoon Raio	1.00	1.00	1.00	1.00	1.00	1.00			
Prop Arrive On Green	0.67	0.67	0.07	0.84	0.03	0.03			
Ln Grp Delay, sveh	7.2	5.6	4.0	1.5	46.5	52.1			
Ln Giplos	A	A	A	A	D	D			
Approach Vo, vehh	1009			641	26				
Approach Delay, sveh	7.0			2.0	50.4				
Approach LOS	A			A	D				
Timer:		1	2	3	4	5	6	7	8
Assigned Phs		1	,		4		6		
Case No		1.2	7.0		9.0		4.0		
Phs Duration ($G+Y+$ Rc), s		15.7	69.9		8.5		85.5		
		9.0	${ }^{6.5}$		6.0		6.5		
Max Green ((Gmx), s ${ }_{\text {M }}$		${ }_{1}^{12.0}$	40.5		20.0		61.5		
		3.6	12.4		3.1		4.6		
Green Ext Time (gee), s		0.1	10.4		0.0		12.2		
Proo of Phs Call (P -c)		0.95	1.00		0.49		1.00		
Prob of Max Out ($\mathrm{P}_{\text {¢ }}$)		0.01	0.15		0.00		0.01		
Left-Tum Movement Data									
Assigned Mumt			5		7				
Munt Sat Fow, vehh		1774	0		1774				
Through Movement Data									
Assigned Mumt			2		4		6		
Munt Sat Fiow, venh			3632		0		3632		
Right-Tum M Mvement Data									
Assigned Mvmt							16		
Munt Sat Fiow, vehh			1583		1583		0		
Lefl Lane Group Data									
Assigned Mvmt			5	0	7	0	0	0	0
Lane Assignment		PrIPm)							

US 460 Corridor Safety Study

US 460 Corridor Safety Study

US 460 Corridor Safety Study

HB \quad| Synchro9 Report |
| :---: |
| 2040 Build PM.syn |

US 460 Corridor Safety Study

1. US 460/Pruden Boulevard \& Northfield Driv

US 460 Corridor Safety Study

2. US460/Pruden Boulevard \& Rob's Drive

US 460 Corridor Safety Study
2040 Build PM

US 460 Corridor Safety Study
2040 Build PM
2: US460/Pruden Boulevard \& Rob's Drive

	\%		\geqslant						P		\downarrow	\checkmark
Movement	EBL	EBT	EBR	WBL	WBt	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuraions	*	个t		${ }^{3}$	$\uparrow \uparrow$	7		4	7		\ddagger	
Trafic Volume (vehh)	6	1442	5		1520	140	8	8	39	${ }^{35}$		
Future Volume (vehh)	6	1442	5	27	1520	140	8	8	39	${ }^{35}$	1	
Number	1	6	16	5	2	12	3	8	18	7	4	
Initial Q, veh	0	0	0	0	0	0	0	0	0	0	0	
Ped-Bike Adj (A pot)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Adj Sat Fow, vehhln	1863	1863	1900	1863	1863	1883	1900	1883	1863	1900	1863	900
Adj Fow Rate, vehh	13	1487	8	46	1583	233	20	11	89	55	2	
Adj No. of Lanes		2	0	1	2		0		1	0		
Peak Hour Factor	0.46	0.97	0.61	0.59	0.96	0.60	0.40	0.75	0.44	0.64	0.45	${ }^{6} .6$
Percent Heary Ven, \%	${ }^{2}$	2	2	2	2	2	兂	2	2	${ }^{2}$	2	
Opposing Right Tum n nfuence	Yes			Yes			Yes			Yes		
Cap, venh	26	2560	14	61	2579	1154	${ }^{133}$		${ }^{133}$	133	9	
HCM Platoon Raio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Prop Afrive On Green	0.01	0.71	0.71	0.03	0.73	0.73	0.08	0.08	0.08	0.08	0.08	0.08
Ln Gip Deala, sveh	57.1	8.4	8.4	69.8	8.4	5.1	47.3	0.0	54.7	51.4	0.0	
Ln Giplos	E	A	A	E	A	A	D		D	D		
Approach Vol, vehh		1508			1862			120			68	
Approach Delay, sveh		8.8			9.5			52.8			51.4	
Approach LOS		A			A			D			D	
Timer:		1	2	3	4	5	6	7	8			
Assigned Phs		1	2		4	5	6		8			
Case №		2.0	3.0		8.0	2.0	4.0		7.0			
Phs Duration ($G+\gamma+\mathrm{Rc}$) , s		7.7	86.9		15.3	9.9	84.8		15.3			
Change Period ($(+R \mathrm{Rc}$), s		6.1	6.8		6.1	6.1	6.8		6.1			
Max Green (Gmax), s		13.9	53.2		23.9	13.9	53.2		23.9			
Max Alow Headway (MAH), s		3.8	5.0		4.8	3.8	5.0		4.8			
Max Q Cliear (q coti), s			26.2		8.6	4.8	24.4		8.0			
Green Ext Time (g_{e}), s			24.3		0.7	0.0	25.7		0.7			
Prob of ph Call $(\mathrm{P}$. c)		0.33	${ }^{1.00}$		1.00	0.15	1.00		1.00			
Proo of Max Out (p^{x})		0.00	0.89		0.00	0.00	0.89		0.00			
Left-Turn Movement Data												
Assigned Mvot		1			7	5			3			
Mvut Sat Flow, vehh		1774			878	1774			940			
Through Movemen Data												
Assigned Mvmt			2		4		${ }^{6}$		8			
Mumit Sat Fow, vehh			3539		110		3610		738			
RRight-Tum Movement Data												
Assigned Mvmt			12		14		16		18			
Mvmt Sat Fow, vehh			1583		191		19		1583			
Left Lane Group Data												
Assigned Mvmt			0	0			0	0				
Lane Assigment		(Prot)			L+T+R	(Prot)			L+T			

US 460 Corridor Safety Study
2: US460/Pruden Boulevard \& Rob's Driv

US 460 Corridor Safety Study
2: US460/Pruden Boulevard \& Rob's Drive

vнв

Synchro 9 Report
2040 Build $P M . s y n$

US 460 Corridor Safety Study
3. US460/Pruden Boulevard \& Kings Fork Rd

US 460 Corridor Safety Study
3: US460/Pruden Boulevard \& Kings Fork Rd 2040 Build PM

US 460 Corridor Safety Study

US 460 Corridor Safety Study
3: US460/Pruden Boulevard \& Kings Fork Rd
2040 Build PM

3: US460/Pruden Boulevard \& Kings Fork Rd

US 460 Corridor Safety Study
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard $\quad 2040$ Build PM

S 460 Corridor Safety Study

Area Type: Cycie Lengt: 1

Control Type: Actuated-Uncoordinated
Intersection Signai: Delay: 22.2

VHB
Synchro9 Report
2040 Build PM.syn

US 460 Corridor Safety Stud
4: Providence Road/Lake Prince Drive \& US460/Pruden Boulevard

S 460 Corridor Safety Study

Providence Read

Lanes in Grip	1	0	0	1	1	0	0	位	
Gip Vol (v) venh	22	0	0	214	79	0	0	${ }^{212}$	
GrpSat Fow (s), vehhlln	1774	0	0	1570	1774	0	0	1259	
Q Seve Time (g.s.s) ${ }^{\text {s }}$	0.5	0.0	0.0	0.0	1.8	0.0	0.0	4.0	
	0.5	0.0	0.0	12.3	1.8	0.0	0.0	16.3	
Perm LT Sat Fiow (s)l, vehhlin	323	0	0	1341	373	0	0	${ }^{1281}$	
Shared LT Sat Fow (s_sh), vehhlln		0	0	1525	0	0	0	1136	
Perm LTEEf Green (9 p p , s	55.9	0.0	0.0	18.8	53.7	0.0	0.0	18.8	
Perm LT Seve Time ($(\underline{\text { u }}$) , s	30.4	0.0	0.0	2.6	24.8	0.0	0.0	${ }_{6}^{6.6}$	
Perm LT Q Seve Time (_-sp), $^{\text {s }}$	1.9	0.0	0.0	0.0	7.8	0.0	0.0	4.0	
Time to First $\mathrm{Bk}\left(\mathrm{g}_{-}\right)_{\text {, }} \mathrm{s}$	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.8	
Sene Time pre Bik (9.ts), s	0.0	0.0	0.0	2.4	0.0	0.0	0.0	0.8	
Prop LT Inside Lane (P_{L} L)	1.00	0.00	0.00	0.40	1.00	0.00	0.00	0.63	
Lane Grp Cap (c), venh	216	0	0	355	249	0	0	304	
VC Ratio ($)$	0.10	0.00	0.00	0.60	0.32	0.00	0.00	0.70	
Avail Cap (c.al), vehh	342	0		377	${ }^{337}$	0	0	331	
Ustream Filler (1)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	
Uniform Delay (d1), sven	11.6	0.0	0.0	36.4	13.7	0.0	0.0	38.3	
Incr Delay (d2), sveh	0.2	0.0	0.0	2.4	0.7	0.0	0.0	5.7	
Initial Q Dealay (33), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Pelay (d), sveh	11.8	0.0	0.0	38.9	14.4	0.0	0.0	44.1	
1 1st-Tem Q (Q1), vehln	0.2	0.0	0.0	5.3	0.9	0.0	0.0	5.5	
$2 \mathrm{nd-Temm} \mathrm{Q} \mathrm{(Q2)}$,	0.0	0.0	0.0	0.2	0.0	0.0	0.0	0.5	
3 3rd-Term Q (Q3), vehln	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
\%oile Back of Q Factor (f.E\%)	1.00	0.00	0.00	1.00	1.00	0.00	0.00	1.00	
\%oile Back of Q (50\%), vehln	0.3	0.0	0.0	5.6	0.9	0.0	0.0	6.0	
\%ole Storage Raio (RO\%)	0.03	0.00	0.00	0.06	0.12	0.00	0.00	0.08	
Initial Q (ab), ven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Final (Resiciual) Q (Qe), veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Delay (ds), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Q Qss, veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Sat Cap (cs), vehh	0	0	0	0	0	0	0		
Initial Q Cliear Time (to), h	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Midde Lane Group Data									
Assigned Mvmi	0	$\stackrel{2}{T}$	0	4	0	$\stackrel{6}{5}$	0	8	
Lane Assignment		T				T			
Lanes in Grp	0	2	0	0	0	1	0	0	
$\mathrm{Grp}^{\text {Grpol (1). vehh }}$	0	${ }_{1}^{1346}$	0	0	0	1770	0	0	
$\mathrm{G}_{\text {Grp Sat Fow (s), velhhln }}$	0	1770	O	0	0	1770	0	0	
Q Seve Time (g S), s	0.0	25.5	0.0	0.0	0.0	28.7	0.0	0.0	
Cycle Q Cliar Time (g.C), \mathbf{s}	0.0	2.5	0.0	0.0	0.0	28.7	0.0	0.0	
Lane Grp Cap (c) veenh		2031		0	0	976	0		
VIC Ratio ($)$	0.00	0.66	0.00	0.00	0.00	0.72	0.00	0.00	
Avail Cap (c.al) venh		2189	0	0	0	1094	0		
Ustream Filere (1)	0.00	1.00	0.00	0.00	0.00	1.00	0.00	0.00	
Uniform Delay (d1), sven	0.0	14.3	0.0	0.0	0.0	16.2	0.0	0.0	
Incr Delay (d2), sveh	0.0	0.7	0.0	0.0	0.0	2.0	0.0	0.0	
Initial Q Delay (3), sven	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Contol Delay (d), sveh	0.0	14.9	0.0	0.0	0.0	18.2	0.0	0.0	
1st-Term Q (a1), veenln	0.0	12.3	0.0	0.0	0.0	13.8	0.0	0.0	
VHB									Synchro 9 Report 20 Build PM.syn

US 460 Corridor Safety Study

$\frac{\text { Notes }}{\text { HCM }}$
vнв
Synchro9 Repor
204C Buic PMsyin

US 460 Corridor Safety Study

	\rightarrow	\geqslant	\checkmark	\leftarrow	4	-
Lane Group	Ebt	EBR	WBL	wbt	NBL	NBR
Lane Configuraions	${ }^{19}$			$\uparrow \uparrow$		\%
Traficic Volume (voh)	${ }^{1297}$	${ }^{2}$	0	1347	0	2
Future Volume (vph)	${ }^{1297}$		0	1347	0	O
Ideal Fow (vphol)	1900	1900	1900	1900	1900	1900
Lane Uil. Factor	0.95	0.95	1.00	0.95	1.00	1.00
Ft						0.865
	3539	0	0	3539	0	1611
Fttremited						
Sadd. Fow (perm)	3539	0	0	3539	0	1611
Link Speed (mph)	55			55	25	
Link Distance (t)	1965			471	1166	
Travel Time (s)	24.4			5.8	31.8	
Peak Hour Factor	0.96	0.92	0.92	0.95	0.25	0.25
Adj. Fow (phh)	1351	2	-	1418	0	8
Shared Lane Trafic (\%)						
Lane Group Fow (vph)	1353	0	0	1418	0	8
Sign Contol	Free			Free	Stop	
Intersection Summay						
Area Type: Other						

naysis Period (min) 15

US 460 Corridor Safety Study
: Woodlawn Dr \& US460/Pruden Bowlevard

vнв

$\begin{array}{lllllllllll} & 661 & 61 & 101 & 1151 & 0 & 0 & 59 & 126 & 0 & 12\end{array}$
$\frac{\text { netrecection Summary }}{\text { Area Type: }}$
Area Type:
Conto Type: Unignalized
other
Intersection Capacitiv Uuiration 62.8%
Analysis
erioid (ini)
ICU Level of Senice B
vHB

US 460 Corridor Safety Study

US 460 Corridor Safety Study
7: Dominion Way \& US 460/Windsor Boulevard
2040 Build PM

vHB
Synchro 9 Report
2040 suild PM.syn

US 460 Corridor Safety Study
7.Dominion Way \& US 460/Windsor Boulevard

Appendix E

E. 1 Existing Traffic Signal Warrant Screening

This report details the findings of a high level traffic signal warrant screening on the Route 460/Windsor Boulevard and Old Suffolk Road intersection, to determine whether a signal would be warranted for the existing conditions.
Evaluation of the need for a traffic signal at an intersection requires the examination of various factors such as traffic volumes, traffic flow and progression and overall safety of the intersection to determine if a traffic signal would be warranted. Screening of the peak hour and four-hour volume checks for the existing conditions were included in this evaluation.
This traffic signal warrant screening includes high level signal warrant analysis.
E.1.1 Methodology

Signal warrant screening was performed following the procedures outlined in the 2009 edition of the Manual of Uniform Traffic Control Devices (MUTCD) Existing fourteen-hour turning movement counts were collected at the study intersection on Tuesday, May 16th, 2017 and were used for this high level signal warrant screening.
E.1.2 Warrant Analysis Results
E.1.2.1 Warrant 2 - Four Hour Vehicular Volume

Warrant 2, Four-Hour Vehicular Volume, is intended for use at locations where a large volume of intersecting traffic is the principal reason to consider installing a traffic signal. A traffic signal is warranted based on Warrant 2 if "the plotted points representing the vehicles per hour on the major street and the minor street fall above the applicable curve."

Considering 55 MPH posted speed limit on Route 460/Windsor Boulevard Figure E-1 was used to screen warrant 2. The highest four-hour volumes were selected based on the minor street highest volumes recorded in fourteen-hour counts, then the major street both approaches volumes were calculated. The following table 2 represents the highest four-hour volumes that were used to screen this warrant.

Table E.1.
Existing Conditions - Four Hour Vehicular Volumes.

Time Period	Major Street Volumes (both approaches)	Minor Street Volume (Higher Volume Approach)
6:00-7:00 AM	964	99
$4: 00-5: 00 \mathrm{PM}$	1291	59
5:00-6:00 PM	1370	65
$6: 00-7: 00 \mathrm{PM}$	868	99

The plotted points represent vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor street approach (one direction only). The four highest hour volumes at the study intersection plotted on the following figure showed that only two points exceed the threshold of 80 vehicles per hour (VPH) for two or more lanes on major street and two and more lanes on minor street.

Warrant 2 is not satisfied.

MANOR STREET-TOTAL OF BOTH APPROACHES-
VEHICLES PER HOUR (VPH)
-Note: 80 von applies as the lower thresholl volume tor a minor-street
approach with two or more lanes and 60 vpl applies as the lower approach with two or more lanes and 60 vph applies as the low
threshold volume tor a minor.street approach with one lane.
Figure E.1.
Existing Conditions - Warrant 2 Summary.

E.1.1.2 Warrant 3 - Peak Hour

Warrant 3, Peak Hour, "is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minor-street traffic suffers undue delay when entering or crossing the major street." The Peak Hour warrant is met when "the plotted point representing the vehicles per hour on the major street and the minor street for one hour fall above the applicable curve" or based on the following conditions:
\diamond The total stopped time delay experienced by the traffic on one minorstreet approach controlled by a stop sign equals or exceeds: 4 vehiclehours for a one-lane approach; or 5 vehicle-hours for a two-lane approach, and
\diamond The volume on the same minor-street approach equals or exceeds 75 vehicles per hour for one lane or 100 vehicles per hour for two lanes, and
\diamond The total entering volume during the hour meets or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
Considering 55 MPH posted speed limit on Route 460/Windsor Boulevard, Figure E-2 was used to screen warrant 3. The following Table E. 2 represents peak hour volumes that were used to screen this warrant.

The plotted points represent vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor street approach (one direction only). Both morning and evening peak hour volumes fall below the curve for the geometric combination as shown in Figure E-2. Therefore, this warrant is not satisfied.

$$
\text { Warrant } 3 \text { is not satisfied. }
$$

Table E.2.
Existing Conditions - Peak Hour Volumes.

Time Period	Major Street Volumes (both approaches)	Minor Street Volume (Hisher Volume Approach)
$6: 15-7: 15$	1042	92
$4: 45-5: 45$	1385	59

MAJOR STREET-TOTAL OF BOTH APPROACHES-
VEHICLES PER HOUR (VPH)
Note: 100 vph applies as the lower threshold volume tor a minor-street
approach with two or more lanes and 75 vph applies as the lower aproach with two or more lanes and 77 vplaphaplies as the lower
Figure E. 2
Existing Conditions - Warrant 3 Summary
E.1.3 Conclusions

The performed high level signal warrant screening for the existing conditions at the intersection of Route 460/Windsor Boulevard and Old Suffolk Road showed that under existing conditions, the subject intersection does not meet two signal traffic warrants outlined by the MUTCD and used in this signal warrant screening
\diamond Warrant 2 - Four-Hour Vehicular Volume - is not satisfied;

- Warrant 3 - Peak Hour - is not satisfied.

Therefore, traffic signal installation is not recommended at the subject intersection based on the findings of the performed signal warrant screening

E. 22040 Build Traffic Signal Warrant Screening

This report details the findings of a high level traffic signal warrant screening on the Route 460/Windsor Boulevard \& Old Suffolk Road intersection, to determine whether a signal would be warranted in the future under 2040 Build conditions.
Evaluation of the need for a traffic signal at an intersection requires the examination of various factors such as traffic volumes, traffic flow and progression, and overall safety of the intersection to determine if a traffic signal would be warranted. Screening of the peak hour and four-hour volume checks for the 2040 Build conditions were included in this evaluation.
This traffic signal warrant screening includes high level signal warrant analysis.
E.2.1 Methodology

Signal warrant screening was performed following the procedures outlined in the 2009 edition of the Manual of Uniform Traffic Control Devices (MUTCD) Existing fourteen-hour turning movement counts were collected at the study intersection on Tuesday, May 16th, 2017.One percent (1\%) growth rate was used for the major road (Route 460/Windsor Boulevard) and half of a percent (0.5%) growth rate was used for the minor street (Old Suffolk Road) to calculate future volumes to be used for this high level signal warrant screening.

E.2.2 Warrant Analysis Results

2.2.1 Warrant 2 - Four Hour Vehicular Volum

Warrant 2, Four-Hour Vehicular Volume, is intended for use at locations where a large volume of intersecting traffic is the principal reason to consider installing a traffic signal. A traffic signal is warranted based on Warrant 2 if "the plotted points representing the vehicles per hour on the major street and the minor street fall above the applicable curve."

Considering 55 MPH posted speed limit on Route 460/Windsor Boulevard, Figure 4C-2 was used to screen warrant 2. The highest four-hour volumes were selected based on the minor street highest volumes recorded during fourteenhour counts, then the major street both approaches volumes were calculated One percent growth rate was used on a major street and half percent growth rate was used on a minor street to calculate volumes for 2040 Build conditions for this signal warrant screening. The following table E.3. represents the highest four-hour volumes that were used to screen this warrant.

The plotted points represent vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor street approach (one direction only). The four highest hour volumes at the study intersection plotted on the following figure showed that only two points exceed the threshold of 80 vehicles per hour (VPH) for two or more lanes on major street and two and more lanes on minor street. Therefore, this warrant is not satisfied.

Warrant 2 is not satisfied.

Table E. 3.
Existing Conditions - Four Hour Vehicular Volumes.

Time Period	Major Street Volumes (both approaches)	Minor Street Volume (Higher Volume Approach)
$6: 00-7: 00 \mathrm{AM}$	1212	111
$4: 00-5: 00 \mathrm{PM}$	1623	66
5:00-6:00 PM	1722	73
$6: 00-7: 00 \mathrm{PM}$	1091	124

 Existing Conditions - Warrant 2 Summary.
 E.2.2.2 Warrant 3 - Peak Hour

Warrant 3, Peak Hour, "is intended for use at a location where traffic conditions are such that for a minimum of 1 hour of an average day, the minor-street traffic suffers undue delay when entering or crossing the major street." The Peak Hour warrant is met when "the plotted point representing the vehicles per hour on the major street and the minor street for one hour fall above the applicable curve" or based on the following conditions:
\diamond The total stopped time delay experienced by the traffic on one minorstreet approach controlled by a stop sign equals or exceeds: 4 vehiclehours for a one-lane approach; or 5 vehicle-hours for a two-lane approach, and
\diamond The volume on the same minor-street approach equals or exceeds 75 vehicles per hour for one lane or 100 vehicles per hour for two lanes, and
\diamond The total entering volume during the hour meets or exceeds 650 vehicles per hour for intersections with three approaches or 800 vehicles per hour for intersections with four or more approaches.
Considering 55 MPH posted speed limit on US 460/Windsor Boulevard, Figure E.3. was used to screen warrant 3. Existing peak hour volumes were used to calculated projected 2040 Build scenario volumes with added one percent (1\%)
growth rate on the major street (Route 460/Burden Boulevard) and half percent (0.5%) growth rate on the minor street (Old Suffolk Road). The following table E.4. represents peak hour volumes that were used to screen this warrant.

The plotted points represent vehicles per hour on the major street (total of both approaches) and the corresponding vehicles per hour on the higher-volume minor street approach (one direction only). Morning peak hour volume falls above the curve, while evening peak hour volume falls below the curve for the geometric combination as shown in Figure E.4. Therefore, this warrant is not satisfied.

Warrant 3 is not satisfied.
Table E. 4
Existing Conditions - Peak Hour Vehicular Volumes.

Time Period	Major Street Volumes (both approaches)	Minor Street Volume (Higher VVlume Approach)
$6: 15-7: 15$	1310	103
$4: 45-5: 45$	1741	66

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET - TOTAL OF BOTH APPROACHESVEHICLES PER HOUR (VPH)
 approach with two or more lanes and 75 vph applies as the lowe
theshold volume tor a minor-street approach with one lane.
Figure E.4.
Existing Conditions - Warrant 3 Summary.

.2.3 Conclusions

The performed high level signal warrant screening for the 2040 Build conditions at the intersection of US 460/Windsor Boulevard and Old Suffolk Road showed that if traffic growth happens as projected, the subject intersection does not meet two signal traffic warrants outlined by the MUTCD and used in this signa warrant screening:
\diamond Warrant 2 - Four-Hour Vehicular Volume - is not satisfied;
\diamond Warrant 3 - Peak Hour - is not satisfied
Therefore, traffic signal installation is not recommended at the subject intersection based on the findings of the performed signal warrant screening.

Appendix F

[^4]

Appendix G

Prouject safetr Performance summary report

Referenee Number	${ }^{3995529}$
	chir
conntat hone	
Date Completed	01/2/418

Discussion of Results

Let

NOTE: Northfield Drive intersection and Dominion Way intersections are 3 -leg signalized intersections and are currently modeled as a 4 -leg signalized intersection, HSM does not have an SPF for 3 -leg signalized.

Appendix H

Site Specific Cost Estimate.												
		Location 1	Location 2	Location 3	Location 4	Location 5	Location 6	Location 7	Location 8	Location 9	Location 10	Location 11
$\stackrel{\stackrel{\rightharpoonup}{\Phi}}{\stackrel{\rightharpoonup}{\square}}$	Signage		\$803		\$503							
	Pavement Markings	\$11,909	\$14,006	\$13,522	\$19,612	\$7,541						
	Signal	\$792	\$792	\$792	\$792							
	Other	\$166	\$166	\$166	\$166	\$166	\$166	\$166	\$166	\$332	\$166	\$166
	Total	\$12,867	\$15,767	\$14,480	\$21,073	\$7,707	\$166	\$166	\$166	\$332	\$166	\$166
$\stackrel{N}{\stackrel{N}{i}}$	Signage	\$500	\$660	\$660	\$660	\$660	\$660	\$660	\$660	\$660	\$660	\$660
	Pavement Markings	\$1,016	\$964	\$871	\$554	\$7,541						
	Signal			\$2,600	\$2,600							
	Other											
	Total	\$1,516	\$1,624	\$4,131	\$3,814	\$8,201	\$660	\$660	\$660	\$660	\$660	\$660
$\begin{aligned} & \frac{m}{\stackrel{\omega}{i}} \end{aligned}$	Signage			\$7,920	\$7,920	\$7,920			\$7,920			
	Pavement Markings					\$832						
	Signal											
	Other			\$15,000	\$600			\$5,280				
	Mill and Overlay*	\$562,800	\$609,000	\$504,000	\$634,200	\$168,000						
	Install Turn Lane(s)					\$179,000		\$236,000	\$358,000			
	Install Acceleration Lane(s)					\$203,000		\$203,000	\$507,500		\$812,000	\$406,000
	Pave Driveway Apron						\$6,000		\$23,000	\$12,000		
	Roadway Lighting	\$20,000				\$20,000						
	Widen Shoulder \& Add Guardrail					\$52,026						
	Widen Shoulder	\$52,034					\$104,068			\$104,068		
	Realign Intersection							\$154,532				
	Total	\$634,834	\$609,000	\$526,920	\$642,720	\$630,778	\$110,068	\$598,812	\$896,420	\$116,068	\$812,000	\$406,000

Note: 1) Systemic improvements from the templates are not included separately in this estimate. They are accounted for in the systemic cost estimate
2) Right of way and utility relocations are not included in these estimates
3) Full depth pavement replacement may be necessary, but is not included in the cost.
*Does not include new pavement markings - those are accounted for above in Tier 1 and Tier 2.

Appendix I

Widening of both east and westbound lanes to 11 ' minimum, shoulders to 8 ', and Instalation of Median Barrier Assumptions:
8,040 ' of widening paved shoulder to 8 ' in EB and WB
directions, from Lovers Ln to Suffolk City ine. directions, from Lovers $L n$ to Suffolk City line.
$\delta^{"}$ asphalt pavement depth, 10 " aggregate base 6" asphalt pavement depth, 10 " aggregate base
(Shoulders) $8,040^{\prime}$ 'of widening roadway by 5 ' in EB and WB
direction to accommodate concrete median barrier direction to accommodate concrete
from Lovers Ln to Suffiolk city
ine.
9 a asphalt pavement depth, 12 " aggregate base (trave
ane) lane)
Pural principal arterial functional Ditched roadway section
Existing lane widths are 11
Nis milling of adicice are 11 ' (no widening of lanes) Utility relocation cost have been captured in this Utility rele
estimate OW cost have not been captured in this estimate

E(Excludes Subtotal B)	s 8.056,423

Appendix J

Appendix J

Systemic Cost Estimate Summary	Total Cost
"Template 1 -4-LEG (2-Way Stop Controlled), Unseparated (for 2 Intersections)"	
Tier 1	$\$ 132,215.81$
Tier 2	$\$ 17,315.79$
Tier 3	$\$ 21,141.44$
"Template 3 - 3-LEG (1-Way Stop Controlled), Unseparated (for 5 Intersections)"	
Tier 1	
Tier 2	$\$ 145,446.03$
Tier 3	$\$ 34,520.36$
"Template 7 - Signalized - No Median	
(for 2 Intersections)"	$\$ 38,279.60$
Tier 1	$\$ 139,256.33$
Tier 2	$\$ 14,971.33$
Tier 3	$\$ 30,198.49$
"Template 8 - Signalized - Median	
(for 3 Intersections)"	
Tier 1	$\$ 345,257.76$
Tier 2	$\$ 73,544.18$
Tier 3	$\$ 32,536.94$
"Template 9 - Corridor - No Median (1 mile segment)	
(for 6.3 miles)"	
Tier 1	$\$ 496,178.63$
Tier 2	$\$ 378,465.19$
Tier 3	$\$ 276,400.15$
"Template 11 - Curve - No Median	
(for 2 curves)"	
Tier 1	$\$ 35,137.35$
Tier 2	$\$ 209,727.76$
Tier 3	

[^0]: RCUT: Restricted Crossing U-Turn (RCUT) Intersection

[^1]: 1 American Association of State Highway and Transportation Officials. Highway Safety Manual. U.S. Department of Transportation Federal Highway Administration

 2 Federal Highway Administration Office of Safety. Systemic Safety Project Selection Tool. U.S. Department of Transportation, Fed eral Highway Administration.

[^2]: 3 Virginia Department of Transportation. Traffic Operations and
 Safety Manual. Available: http://www.virginiadot.org/business/resources/ TOSAM.pdf.

 4 Federal Highway Administration. Integrating the HSM into the lighway Project Development Process. Available: https://safety.fhwa.do ov/hsm/hsm integration/sec2.cfm.

[^3]: 30 | ROUTE 460 SAFETY AND OPERATIONs STUD

[^4]: YEAR 2009

